留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电弧风洞喷管壁温对平板试验的影响研究

隆永胜 袁竭 赵顺洪 杨斌 朱新新

隆永胜,袁竭,赵顺洪,等. 电弧风洞喷管壁温对平板试验的影响研究[J]. 实验流体力学,2022,36(6):47-53 doi: 10.11729/syltlx20210055
引用本文: 隆永胜,袁竭,赵顺洪,等. 电弧风洞喷管壁温对平板试验的影响研究[J]. 实验流体力学,2022,36(6):47-53 doi: 10.11729/syltlx20210055
LONG Y S,YUAN J,ZHAO S H,et al. Influence of nozzle wall temperature on plate test in arc-heated wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):47-53. doi: 10.11729/syltlx20210055
Citation: LONG Y S,YUAN J,ZHAO S H,et al. Influence of nozzle wall temperature on plate test in arc-heated wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):47-53. doi: 10.11729/syltlx20210055

电弧风洞喷管壁温对平板试验的影响研究

doi: 10.11729/syltlx20210055
详细信息
    作者简介:

    隆永胜:(1972—),男,重庆丰都人,研究员。研究方向:电弧加热器研制,高超声速气动热试验技术。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:lyscardc@163.com

    通讯作者:

    E-mail:yuanjie2005@163.com

  • 中图分类号: V211.74+4

Influence of nozzle wall temperature on plate test in arc-heated wind tunnel

  • 摘要: 为研究电弧风洞喷管壁面温度对平板试验的影响,研制了隔热半椭圆喷管,采用电弧风洞半椭圆喷管平板试验的方法,将喷管长轴边与平板试验模型连接,使气流延伸到模型表面进行试验。喷管扩张段水冷壁面在试验初始时期(冷壁)和壁温上升(热壁)条件下,试验研究了平板测试模型表面冷壁热流和平衡温度的变化。结果表明:在喷管来流焓值1.00~2.55 MJ/kg范围内,相对于冷壁,热壁模型表面冷壁热流增加4.7%~15.0%,平衡温度最大升高4.24%。因此,热防护试验时应考虑喷管壁面温度对平板试验结果带来的影响,需要提高来流焓值。
  • 图  1  平板试验技术

    Figure  1.  Plate test technology

    图  2  隔热半椭圆喷管

    Figure  2.  Thermal insulation semi-elliptical nozzle

    图  3  风洞测试装置布局

    Figure  3.  Test equipment layout in wind tunnel

    图  4  气流温度测试探针测点分布

    Figure  4.  Distribution of gas temperature probes

    图  5  水冷戈登计及冷壁热流测点

    Figure  5.  Gardon gaging points distribution and heat flux

    图  6  隔热平板测温模型

    Figure  6.  Thermal insulation plate model for temperature measurement

    图  7  总温探针测试曲线

    Figure  7.  Curves of total temperature

    图  8  喷管背面测点温升曲线

    Figure  8.  Nozzle back wall temperature-time curve

    图  9  不同状态下模型冷壁热流变化

    Figure  9.  Variation of heat flux under different conditions

    图  10  近壁面气流总温变化

    Figure  10.  Variation of total air temperature near wall

    图  11  计算网格

    Figure  11.  Simulation grid

    图  12  喷管壁面温度对模型热流及近壁气流总温影响

    Figure  12.  Influence of nozzle wall temperature on heat flux and total air temperature near nozzle wall

    图  13  数值模拟恢复温度

    Figure  13.  Recovery temperature calculated by numerical simulation

    表  1  电弧风洞试验状态参数

    Table  1.   Average values of test parameters in arc-heated wind tunnel

    状态总压/MPa总焓/(MJ·kg−1驻点压力/kPa驻点热流/(MW·m−2气体流量/(kg·s−1总功率/MW
    12.571.04360.761.326.7914.53
    21.982.12277.402.863.4315.84
    31.662.55236.703.752.4515.43
    下载: 导出CSV

    表  2  不同总焓及防热板温度下的表面冷壁热流

    Table  2.   Heat flux on cold wall with different total enthalpies and plate temperatures

    状态时间/s特征点背温T6/K测点1热流/(kW·m−2测点2热流/(kW·m−2测点3热流/(kW·m−2
    10 309.0 182.0 197.0 180.0
    1 300 443.0 204.0 224.0 207.0
    增量/% 43.4 12.1 13.7 15.0
    10 293.0 390.0 370.0 380.0
    2 300 1096.0 420.0 420.0 430.0
    增量/% 274.1 7.7 13.5 10.5
    10 303.0 405.0 418.0 414.0
    3 100 1046.0 424.0 456.0 447.0
    增量/% 245.2 4.7 9.1 8.0
    下载: 导出CSV

    表  3  近壁面气流总温变化

    Table  3.   Variation of total air temperature near wall

    状态 测点高度/mm
    051015
    1 冷壁温度/K 641 757 873 978
    140 s温度/K 714 789 929 985
    增量/% 11.4 4.2 6.4 0.7
    2 冷壁温度/K 901 1022 1272 1408
    140 s温度/K 1058 1214 1359 1459
    增量/% 17.4 18.8 6.8 3.6
    下载: 导出CSV

    表  4  隔热平板测温模型平均温度对比

    Table  4.   Comparison of average temperature on stainless-steel plate

    状态T1/KT2/KTb1/KTb2/K表面温差率/%背面温差率/%
    17357236486430.670.78
    211271084103410043.892.94
    312491201110910633.924.23
    下载: 导出CSV

    表  5  焓值降低量

    Table  5.   Decrease of enthalpy

    状态总焓/(MJ·kg−1计算恢复焓/(MJ·kg−1隔热模型恢复焓/(MJ·kg−1近壁气流恢复焓/(MJ·kg−1隔热模型焓降/%近壁气流焓降/%
    11.040.7630.7260.764.850.39
    22.121.2161.1641.164.284.61
    32.551.3731.3061.324.883.86
    下载: 导出CSV
  • [1] HURWICZ H, MASCOLA R. Thermal protection systems application research of materials properties and structural concepts[R]. Technical Doc-umentary Report No. ML-TDR-64-82, 1965.
    [2] BOUSLOG S A, MOORE B, LAWSON I. X-33 metallic TPS tests in NASA LaRC high temperature tunnel[C]// Proc of the 37th AIAA Aerospace Sciences Meeting and Exhibit January. 1999.
    [3] VOLAND R, ROCK K, HUEBNER L, et al. Hyper-X engine design and ground test program[C]//Proc of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 1998: 1532. doi: 10.2514/6.1998-1532
    [4] 中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.
    [5] BALTER-PETERSON A, NICHOLS F, MIFSUD B, et al. Arc jet testing in NASA Ames Research Center thermophysics facilities[C]//Proc of the AlAA 4th International Aerospace Planes Conference. 1992: 5041. doi: 10.2514/6.1992-5041
    [6] BRUCE W E, HORN D D, FELDERMAN E J, et al. Arc heater development at AEDC[C]//Proc of the 25th Plasmadynamics and Lasers Conference. 1994: 2591. doi: 10.2514/6.1994-2591
    [7] GOKCEN T, STEWART D A. Computational analysis of semi-elliptical nozzle arc-jet experiments: calibration plate and wing leading edge[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibition. 2005: 4887. doi: 10.2514/6.2005-4887
    [8] SIMMS J, STIEGLITZ W. Semi-elliptical nozzle structural test facility[C]//Proc of the 2nd International Aerospace Planes Conference. 1990: 5227. doi: 10.2514/6.1990-5227
    [9] LOOMIS M, HUI F, POLSKY S, et al. Arc-jet semi-elliptic nozzle simulations and validation in support of X-33 TPS testing[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibi. 1998: 864. doi: 10.2514/6.1998-864
    [10] THOMAS S, VOLAND R, GUY R. Test flow calibration study of the Langley Arc-Heated Scramjet Test Facility[C]//Proc of the 23rd Joint Propulsion Conference. 1987: 2165. doi: 10.2514/6.1987-2165
    [11] 隆永胜,杨远剑,袁竭,等. 电弧风洞半椭圆喷管流场测试分析[J]. 科学技术与工程,2016,16(1):147-150. doi: 10.3969/j.issn.1671-1815.2016.01.027

    LONG Y S,YANG Y J,YUAN J,et al. Calibration and analyses flow of the semi ellipse nozzle in arc wind tunnel[J]. Science Technology and Engineering,2016,16(1):147-150. doi: 10.3969/j.issn.1671-1815.2016.01.027
    [12] American Society for Testing and Materials. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM-E637-05[S/OL]. [2021-05-20]. https://catalogue.library.cern/literature/xhv10-cy803.
    [13] 赵俭. 高温气流温度测量与校准技术[J]. 计测技术,2018,38(6):42-47. doi: 10.11823/j.issn.1674-5795.2018.06.10

    ZHAO J. High gas temperature measurement and calibration technology[J]. Metrology & Measurement Technology,2018,38(6):42-47. doi: 10.11823/j.issn.1674-5795.2018.06.10
    [14] 朱新新,王辉,杨庆涛,等. 弧光灯热流标定系统的光学设计[J]. 光学学报,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001

    ZHU X X,WANG H,YANG Q T,et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  104
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-10-30
  • 录用日期:  2021-11-22
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日