留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

侧壁约束效应对三维方腔自持振荡和噪声辐射影响的实验研究

王超 岳廷瑞 万振华 孙德军

王超,岳廷瑞,万振华,等. 侧壁约束效应对三维方腔自持振荡和噪声辐射影响的实验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210050
引用本文: 王超,岳廷瑞,万振华,等. 侧壁约束效应对三维方腔自持振荡和噪声辐射影响的实验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210050
WANG C,YUE T R,WAN Z H,et al. Experimental study of the effects of confinement on self-sustained oscillations and noise radiation in three-dimensional open cavities[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210050
Citation: WANG C,YUE T R,WAN Z H,et al. Experimental study of the effects of confinement on self-sustained oscillations and noise radiation in three-dimensional open cavities[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210050

侧壁约束效应对三维方腔自持振荡和噪声辐射影响的实验研究

doi: 10.11729/syltlx20210050
基金项目: 国家自然基金(11621202)
详细信息
    作者简介:

    王超:(1986—),男,安徽宿州,硕士,工程师。研究方向:气动声学,风洞设计及试验。通信地址:四川省绵阳市二环路南段6号12信箱1分箱(621000)。E-mail:wangch@mail.ustc.edu.cn

    通讯作者:

    E-mail:wanzh@ustc.edu.cn

  • 中图分类号: O429;V211.7

Experimental study of the effects of confinement on self-sustained oscillations and noise radiation in three-dimensional open cavities

  • 摘要: 实验研究了侧壁约束效应对三维方腔流动结构和噪声辐射特性的影响,固定方腔长深比为2∶1,使用麦克风阵列测量了方腔宽长比从0.1变化至0.5过程中流致噪声在不同指向性下的强度变化规律,并使用脉动压力传感器测量了不同宽长比方腔内部壁面压力分布,同时采用TR-PIV(Time-Resolved Particle Image Velocimetry)测量了方腔内流动结构的发展。实验结果表明:对于宽长比为0.5的方腔,当来流马赫数大于0.03时,方腔流动开始出现振荡并向上游辐射噪声;当来流马赫数增大至0.20时,方腔流动发展为对应Rossiter三阶模态的自持振荡,并辐射出尖频噪声。减小方腔宽度,当宽长比小于0.3时,方腔流动的自持振荡和尖频噪声被大幅度抑制甚至消除,马赫数0.20和0.25时,方腔上游总声压级能够降低3 dB以上。通过对比壁面压力分布和PIV流场测量结果,发现减小方腔宽长比时,方腔内主回流涡向上游移动,涡强度降低,使得方腔的流动反馈不足以形成自持振荡,从而降低了辐射噪声。
  • 图  1  声学风洞实验实物图

    Figure  1.  CARDC low-speed acoustic wind tunnel

    图  2  实验方案示意图

    Figure  2.  Test configuration of experiments

    图  3  水平面和垂直平面的麦克风阵列布置示意图

    Figure  3.  The arrangement of microphone arrays in horizontal and vertical directions

    图  4  方腔内壁面脉动压力传感器布置示意图

    Figure  4.  The arrangement of high frequency dynamic pressure sensors on the cavity walls

    图  5  PIV测量实物图

    Figure  5.  PIV system in the acoustic anechoic room

    图  6  不同风速下的方腔远场噪声频谱特性(W/L = 0.5)

    Figure  6.  PSD distributions for different wind speeds at W/L = 0.5

    图  7  不同宽长比方腔噪声频谱对比

    Figure  7.  PSD comparison for different W/L ratios

    图  8  宽长比0.3与0.4的方腔噪声总声压级对比(Ma=0.20)

    Figure  8.  OASPL comparison between cases with W/L = 0.3 and W/L = 0.4 at a wind speed of Ma 0.20

    图  9  方腔内壁面脉动压力频谱与远场噪声频谱对比(Ma = 0.20,W/L=0.5)

    Figure  9.  PSD distributions based on surface pressure fluctuations at local pressure sensors 1 and 2 and at far-field microphone 12 with a wind speed of Ma 0.20 and W/L=0.5

    图  10  宽长比0.1与0.5的方腔壁面时均压力系数对比(Ma =0.20)

    Figure  10.  Comparison of mean pressure coefficients between the cases with W/L = 0.5 and W/L = 0.1 at Ma 0.20

    图  11  一个振荡周期内方腔瞬时流场变化(Ma =0.20,W/L = 0.5)

    Figure  11.  Six snapshots of flow pattern in a period T0 in the central plane at a wind speed of Ma 0.20 and W/L = 0.5. The streamlines are shown, while the background denotes the field of spanwise vorticity

    图  12  方腔中心平面和近壁面时均流场分布对比(Ma =0.20,W/L = 0.5)

    Figure  12.  Mean flow pattern comparison between central plane and near wall plane at the wind speed of Ma 0.20 (W/L = 0.5)

    图  13  不同宽/长比方腔中心平面时均流场对比(Ma =0.20)

    Figure  13.  The comparison of mean flow patterns in the central plane for different W/L at the wind speed of Ma=0.20

    图  14  宽长比0.3和0.4的方腔中心平面流向时均速度型对比(Ma=0.20)

    Figure  14.  The mean streamwise velocity profiles inside the cavity for W/L = 0.4 and W/L = 0.3 in the central plane at a wind speed of Ma=0.20

  • [1] HUBBARD H H. Aeroacoustics of flight vehicles: theory and practice[R]. NASA-RP-1258, 1991.
    [2] DOBRZYNSKI W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of Aircraft,2010,47(2):353-367. doi: 10.2514/1.44457
    [3] HELLER H H,DOBRZYNSKI W M. Sound radiation from aircraft wheel-well/landing-gear configurations[J]. Journal of Aircraft,1977,14(8):768-774. doi: 10.2514/3.58851
    [4] ZIADA S,NG H,BLAKE C E. Flow excited resonance of a confined shallow cavity in low Mach number flow and its control[J]. Journal of Fluids and Structures,2003,18(1):79-92. doi: 10.1016/S0889-9746(03)00083-5
    [5] ROSHKO A. Some measurements of flow in a rectangular cutout[R]. NACA-TN-3488, 1955.
    [6] TRACY M B, PLENTOVICH E B. Cavity unsteady-pressure measurements at subsonic and transonic speeds[R]. NASA-97-tp3669, 1997.
    [7] BASLEY J,PASTUR L R,DELPRAT N,et al. Space-time aspects of a three-dimensional multi-modulated open cavity flow[J]. Physics of Fluids,2013,25(6):064105. doi: 10.1063/1.4811692
    [8] TAM C K W,PASTOUCHENKO N N,JONES M G,et al. Experimental validation of numerical simulations for an acoustic liner in grazing flow: Self-noise and added drag[J]. Journal of Sound and Vibration,2014,333(13):2831-2854. doi: 10.1016/j.jsv.2014.02.019
    [9] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[EB/OL]. (1964)[2021-05-20]. https://reports.aerade.cranfield.ac.uk/handle/1826.2/4020 1964
    [10] GHARIB M,ROSHKO A. The effect of flow oscillations on cavity drag[J]. Journal of Fluid Mechanics,1987,177:501-530. doi: 10.1017/s002211208700106x
    [11] COLONIUS T, BASU A J, ROWLEY C W. Numerical investigation of the flow past a cavity[C]//Proc of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit. 1999. doi: 10.2514/6.1999-1912
    [12] SHIEH C M, MORRIS P J. Comparison of two- and three-dimensional turbulent cavity flows[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit. 2001. doi: 10.2514/6.2001-511
    [13] MARTIN R,SORIA M,LEHMKUHL O,et al. Noise radiated by an open cavity at low Mach number: Effect of the cavity oscillation mode[J]. International Journal of Aeroacoustics,2019,18(6-7):647-668. doi: 10.1177/1475472x19871534
    [14] ZHANG C,WAN Z H,SUN D J. Mode transition and oscillation suppression in supersonic cavity flow[J]. Applied Mathematics and Mechanics,2016,37(7):941-956. doi: 10.1007/s10483-016-2095-9
    [15] BLOCK P J W. Noise response of cavities of varying dimensions at subsonic speeds[R]. NASA-TN-D-8351, 1976.
    [16] AHUJA K K, MENDOZA J. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[R]. NASA-CR-4653, 1995.
    [17] PICELLA F,LOISEAU J-C,LUSSEYRAN F,et al. Successive bifurcations in a fully three-dimensional open cavity flow[J]. Journal of Fluid Mechanics,2018,844:855-877. doi: 10.1017/jfm.2018.169
    [18] SUN Y Y,LIU Q,CATTAFESTA L N Ⅲ,et al. Effects of sidewalls and leading-edge blowing on flows over long rectangular cavities[J]. AIAA Journal,2018,57(1):106-119. doi: 10.2514/1.J057413
    [19] WELCH P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averag-ing over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics,1967,15(2):70-73. doi: 10.1109/TAU.1967.1161901
    [20] HARRIS F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE,1978,66(1):51-83. doi: 10.1109/PROC.1978.10837
    [21] ROCKWELL D,NAUDASCHER E. Review—Self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering,1978,100(2):152-165. doi: 10.1115/1.3448624
    [22] UNALMIS O H,CLEMENS N T,DOLLING D S. Cavity oscillation mechanisms in high-speed flows[J]. AIAA Journal,2004,42(10):2035-2041. doi: 10.2514/1.1000
    [23] CROOK S D,LAU T C W,KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics,2013,735:587-612. doi: 10.1017/jfm.2013.519
  • 加载中
图(14)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  51
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 录用日期:  2021-06-16
  • 修回日期:  2021-05-28
  • 网络出版日期:  2022-01-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日