留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于螺旋襟翼的喷流偏转实验研究

汪军 赖庆仁 康洪铭 张刘 李斌斌 赵垒 金熠

汪 军,赖庆仁,康洪铭,等. 基于螺旋襟翼的喷流偏转实验研究[J]. 实验流体力学,2021,35(5):47-53 doi: 10.11729/syltlx20210036
引用本文: 汪 军,赖庆仁,康洪铭,等. 基于螺旋襟翼的喷流偏转实验研究[J]. 实验流体力学,2021,35(5):47-53 doi: 10.11729/syltlx20210036
WANG J,LAI Q R,KANG H M,et al. Experimental study on jet turning based on spiral flap[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):47-53. doi: 10.11729/syltlx20210036
Citation: WANG J,LAI Q R,KANG H M,et al. Experimental study on jet turning based on spiral flap[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):47-53. doi: 10.11729/syltlx20210036

基于螺旋襟翼的喷流偏转实验研究

doi: 10.11729/syltlx20210036
基金项目: 中国空气动力研究与发展中心基础和前沿技术研究基金(FFTRF20171001)
详细信息
    作者简介:

    汪军:(1991-),男,安徽巢湖人,硕士研究生,助理工程师。研究方向:动力增升技术。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:wang07@mail.ustc.edu.cn

    通讯作者:

    E-mail:lzh2607@126.com;

    yjin@ustc.edu.cn

  • 中图分类号: V211.73

Experimental study on jet turning based on spiral flap

  • 摘要: 基于阿基米德螺旋线理论,通过逐渐增大曲率半径的方法,设计了一种新型的流动控制襟翼——螺旋襟翼。研究了螺旋襟翼的起始半径、对齐半径等关键控制参数对上表面喷流偏转的影响规律,并与传统基本襟翼的控制效果进行了对比,对二者的控制机理进行了分析。结果表明:所设计的螺旋襟翼最大平均推力偏转角约为19.6°;与基本襟翼相比,螺旋襟翼在大落压比下的平均推力偏转角更大,推力效率更高,这说明改变曲率型面可以促进喷流的流动附着,提高上表面吹气系统性能。
  • 图  1  典型USB系统示意图

    Figure  1.  Typical USB system diagram

    图  2  上表面喷流装置示意图

    Figure  2.  Schematic diagram of upper surface jet device

    图  3  螺旋襟翼的曲面设计

    Figure  3.  Curve design of spiral flap

    图  4  螺旋襟翼安装示意图

    Figure  4.  Installation schematic diagram of spiral flap

    图  5  基本襟翼示意图

    Figure  5.  Sketch map of basic flap

    图  6  基本襟翼半径变化时推力偏角和推力效率曲线(δ = 50°)

    Figure  6.  υ -λ and τ -λ curves basic flap with different radius(δ = 50°)

    图  7  螺旋襟翼对齐半径变化时推力偏角和推力效率曲线(R0/h = 2.00)

    Figure  7.  υ -λ and τ -λ curves of spiral flaps with different alignment radius (R0/h = 2.00)

    图  8  螺旋襟翼对齐半径变化时推力偏角和推力效率曲线(R0/h = 2.50)

    Figure  8.  υ-λ and τ-λ curves of spiral flaps with different alignment radius(R0/h = 2.50)

    图  9  螺旋襟翼对齐半径变化时推力偏角和推力效率曲线(R0/h = 3.00)

    Figure  9.  υ -λ and τ -λ curves of spiral flaps with different alignment radius (R0/h = 3.00)

    图  10  螺旋襟翼与基本襟翼推力偏角和推力效率曲线对比

    Figure  10.  υ -λ and τ -λ curves comparison of spiral flap and basic flap

    图  11  喷流偏转控制机理分析示意图

    Figure  11.  Schematic diagram of jet turning control mechanism analysis

    表  1  TH2003天平载荷与精度

    Table  1.   Loads and accuracy of TH2003 balance

    分量FxFyFz
    MxMy
    Mz
    设计载荷1000 N1500 N1000 N300 N·m500 N·m600 N·m
    精度0.02%0.01%0.01%0.02%0.02%0.01%
    下载: 导出CSV

    表  2  螺旋襟翼参数表

    Table  2.   Parameter list of spiral flap

    序号起始半径对齐半径
    1R0/h = 2.00R1/h = 2.25
    2R1/h = 2.50
    3R1/h = 3.00
    4R1/h = 3.50
    5R0/h = 2.50R1/h = 2.75
    6R1/h = 3.00
    7R1/h = 3.50
    8R1/h = 4.00
    9R0/h = 3.00R1/h = 3.25
    10R1/h = 3.50
    11R1/h = 4.00
    12R1/h = 4.50
    下载: 导出CSV
  • [1] 王磊,杜海,李秋实,等. 环量控制机翼增升及滚转控制特性研究[J]. 空气动力学学报,2021,39(1):43-51. doi: 10.7638/kqdlxxb-2019.0069

    WANG L,DU H,LI Q S,et al. Research on the lift-enhancement and roll control characteristics of a circulation control wing[J]. Acta Aerodynamica Sinica,2021,39(1):43-51. doi: 10.7638/kqdlxxb-2019.0069
    [2] 张庆云,王峥华,魏猛,等. 大型水陆两栖飞机增升装置特殊设计综述[J]. 空气动力学学报,2019,37(1):19-32. doi: 10.7638/kqdlxxb-2017.0110

    ZHANG Q Y,WANG Z H,WEI M,et al. Review of high-lift devices design for amphibious aircraft[J]. Acta Aerodynamica Sinica,2019,37(1):19-32. doi: 10.7638/kqdlxxb-2017.0110
    [3] WIMPRESS J K. Upper surface blowing technology as applied to the YC-14 airplane[J]. SAE Transactions,1973,82:3049-3056.
    [4] YADLIN Y, SHMILOVICH A. Lift enhancement for upper surface blowing airplanes[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2796
    [5] NEWBERRY C F, WIMPRESS J K. The YC-14 STOL prototype: its design, development, and flight test[M]. Reston, VA: AIAA, Inc, 1998. doi: 10.2514/4.868337
    [6] HOHLWEG W C. Low speed wind tunnel investigation of a four-engine upper surface blown model having swept wing and rectangular and D-shaped exhaust nozzles[R]. NASA TND-8061, 1976.
    [7] RIDDLE D, INNIS R, MARTIN J, et al. Powered-lift takeoff performance characteristics determined from flight test of the Quiet Short-haul Research Aircraft /QSRA/[C]//Proc of the 1st Flight Test Conference. 1981. doi: 10.2514/6.1981-2409
    [8] HARRISON N A, VASSBERG J C, DEHANN M A, et al. The design and test of a swept wing upper surface blowing concept[R]. AIAA-2013-1102, 2013.
    [9] JENNETTE T L,AHUJA K K. Noise source location and scaling of subsonic upper-surface blowing[J]. International Journal of Aero-acoustics,2020,19(3-5):191-206. doi: 10.1177/1475472x20930652
    [10] RUMSEY C L,NISHINO T. Numerical study comparing RANS and LES approaches on a circulation control airfoil[J]. International Journal of Heat and Fluid Flow,2011,32(5):847-864. doi: 10.1016/j.ijheatfluidflow.2011.06.011
    [11] MARCOS J, MARSHALL D. Computational and experimental com-parison of a powered lift, upper surface blowing configuration[C]// Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-502
    [12] PAPPA R S. Investigation of surface fluctuating pressures on a 1/4 scale YC-14 upper surface blown flap model[R]. NASA CR-158941, 1978.
    [13] YAMATO H,OKADA N,BANDO T. Flight test of the Japanese Upper Surface Blowing STOL experimental aircraft ASKA[J]. Jour-nal of Aircraft,1991,28(10):630-637. doi: 10.2514/3.46075
    [14] 赵国昌,邢仕廷,宋丽萍,等. 机翼上表面吹气动力增升简化模型[J]. 飞行力学,2018,36(4):39-43.

    ZHAO G C,XING S T,SONG L P,et al. Simplified model of wing upper surface blowing dynamic lift enhancement[J]. Flight Dyna-mics,2018,36(4):39-43.
    [15] XIAO T H,ZHU Z H,DENG S H,et al. Effects of nozzle geometry and active blowing on lift enhancement for upper surface blowing configuration[J]. Aerospace Science and Technology,2021,111:106536. doi: 10.1016/j.ast.2021.106536
    [16] ZHU Z H, XIAO T H, ZHAI C, et al. Numerical study on lift enhancement for upper surface blowing system with powered turbofan engine[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3167
    [17] 章荣平,王勋年,黄勇,等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011

    ZHANG R P,WANG X N,HUANG Y,et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
    [18] 巫朝君,胡卜元,李东,等. 扁平融合式飞机整体式进/排气试验的推/阻校准方法[J]. 实验流体力学,2019,33(5):87-92. doi: 10.11729/syltlx20180141

    WU C J,HU B Y,LI D,et al. Thrust/drag calibrations for integral inlet and jet testing on a aircraft with blended wing/body[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):87-92. doi: 10.11729/syltlx20180141
    [19] 吴鋆,王晋军,李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006

    WU J,WANG J J,LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-05-18
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日