留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流式气泡雾化喷嘴喷雾特性实验研究

赵芳 徐兵兵 符澄 王越 张海洋

赵芳,徐兵兵,符澄,等. 旋流式气泡雾化喷嘴喷雾特性实验研究[J]. 实验流体力学,2022,36(6):28-35 doi: 10.11729/syltlx20210026
引用本文: 赵芳,徐兵兵,符澄,等. 旋流式气泡雾化喷嘴喷雾特性实验研究[J]. 实验流体力学,2022,36(6):28-35 doi: 10.11729/syltlx20210026
ZHAO F,XU B B,FU C,et al. Experimental study on the characteristics of swirl effervescent atomizer[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):28-35. doi: 10.11729/syltlx20210026
Citation: ZHAO F,XU B B,FU C,et al. Experimental study on the characteristics of swirl effervescent atomizer[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):28-35. doi: 10.11729/syltlx20210026

旋流式气泡雾化喷嘴喷雾特性实验研究

doi: 10.11729/syltlx20210026
详细信息
    作者简介:

    赵芳:(1988—),男,湖南衡阳人,硕士,副研究员。研究方向:燃气发生器设计与实验,风洞及相关设备设计与实验。通信地址:四川省绵阳市涪城区二环路南段6号12信箱1分箱(621000)。E-mail:zfcardc@163.com

    通讯作者:

    E-mail:21482724@qq.com

  • 中图分类号: O321;TK313

Experimental study on the characteristics of swirl effervescent atomizer

  • 摘要: 与常规压力雾化、气动雾化相比,气泡雾化具有高效、经济和环保等优点。针对一种可变喷头旋流式气泡雾化喷嘴进行了实验研究,探讨了工作参数、喷嘴孔型、切割丝网目数(孔径)等因素对喷嘴流量、喷雾特性的影响规律。研究结果表明:不同孔型喷嘴的流量特性趋势基本一致;相同工作压力下,气液比不同会导致喷嘴流量的变化;安装切割丝网基本不影响喷嘴的流量特性趋势,但在相同工况下会造成喷嘴流量减小3%~7%,且丝网孔径越小,减小幅度越大;喷雾液滴粒径分布呈单峰形式,且随着工作压力或气液比的增大,喷雾液滴的中位粒径会有不同程度的减小;相同喷雾能耗下,异形(方形、椭圆形)喷孔更有助于提高喷雾性能;丝网有利于提高喷嘴雾化性能,但需综合考虑喷嘴孔型、工作压力等因素选择丝网孔径;此外,安装切割丝网会在一定程度上降低喷雾主流轴向速度。
  • 图  1  实验系统简图

    Figure  1.  Schematic diagram of spray test system

    图  2  喷嘴结构图

    Figure  2.  Structure diagram of effervescent atomizer

    图  3  丝网结构

    Figure  3.  Structure diagram of wire mesh

    图  4  圆孔喷嘴的流量特性

    Figure  4.  Flow characteristics of circular hole atomizer

    图  5  方孔喷嘴的流量特性

    Figure  5.  Flow characteristics of square hole atomizer

    图  6  椭圆孔喷嘴的流量特性

    Figure  6.  Flow characteristics of elliptical hole atomizer

    图  7  不同孔型喷嘴流量系数曲线对比

    Figure  7.  Flow coefficient comparison of atomizer with different hole structures

    图  8  安装80目切割丝网后圆孔喷嘴的流量特性

    Figure  8.  Flow characteristics of atomizer with 80 mesh cutting screen

    图  9  不同目数切割丝网对圆孔喷嘴流量特性的影响

    Figure  9.  Flow characteristics comparison of atomizer with different hole structure cutting screen meshes

    图  10  不同孔型喷嘴喷雾锥角对比

    Figure  10.  Spray cone angle comparison of atomizer with different hole structures

    图  11  圆孔喷嘴喷雾液滴中位粒径随气液比的变化

    Figure  11.  D50 curves of circular hole atomizer with gas-liquid ratio

    图  12  喷雾液滴粒径分布

    Figure  12.  Distribution of spray particles

    图  13  不同孔型喷嘴喷雾液滴粒径分布

    Figure  13.  Distribution of spray particles comparison of atomizer with different hole structures

    图  14  切割丝网目数对喷雾液滴中位粒径的影响

    Figure  14.  Influence curves of cutting screen on D50

    图  15  切割丝网对喷雾主流轴向速度的影响

    Figure  15.  Influence curves of cutting screen on spray axial velocity

    表  1  实验参数表

    Table  1.   Experimental parameters

    参数数值(编号)
    工作压力p/MPa0.2、0.3、0.4、0.5、0.6
    气液比0.10~0.35
    孔型Case 1、Case 2、Case 3
    切割丝网目数0、50、80、100(0表示未安装丝网,其他
    对应丝网孔径分别为0.27、0.18和0.15 mm)
    下载: 导出CSV

    表  2  不同孔型喷嘴的喷雾液滴中位粒径

    Table  2.   D50 of atomizer with various hole structures

    喷嘴编号D50/μm
    Case 1 22.94
    Case 2 14.92
    Case 3 19.97
    下载: 导出CSV
  • [1] LEFEBVRE A H,WANG X F,MARTIN C A. Spray characteristics of aerated-liquid pressure atomizers[J]. Journal of Propulsion and Power,1988,4(4):293-298. doi: 10.2514/3.23066
    [2] SOVANI S D,SOJKA P E,LEFEBVRE A H. Effervescent atomization[J]. Progress in Energy and Combustion Science,2001,27(4):483-521. doi: 10.1016/S0360-1285(00)00029-0
    [3] COLANTONIO R O. Application of jet-shear-layer mixing and effervescent atomization to the development of a low-NOx combustor[R]. NASA-TM-105888, 1993.
    [4] LI J B, LEFEBVRE A H, ROLLBUHLER J R. Effervescent atomizers for small gas turbines[R]. American Society of Mechanical Engineers, 94-GT-495, 1994: 1-6. doi: 10.1115/94-GT-495
    [5] CHIN J S,LEFEBVRE A H. A design procedure for effervescent atomizers[J]. Journal of Engineering for Gas Turbines and Power,1995,117(2):266-271. doi: 10.1115/1.2814090
    [6] WANG X F,CHIN J S,LEFEBVRE A H. Influence of gas-injector geometry on atomization performance of aerated-liquid nozzles[J]. International Journal of Turbo and Jet Engines,1989,6(3-4):271-279. doi: 10.1515/tjj.1989.6.3-4.271
    [7] LAWLER A, WADE R A, SOJKA P E. Flame length and pollutant emission characteristics of effervescent atomizer/burner stabilized jet flames, combustion fundamentals and applications[C]//Proceedings of the Technical Meeting of the Central States Section of the Combustion Institute. 1996.
    [8] WADE R A, SOJKA P E, GORE J P. Effervescent atomization using high supply pressures[C]// Proceedings of the 9th Annual Conference on Liquid Atomization and Spray Systems. 1996: 263-270.
    [9] WADE R A,WEERTS J M,GORE J P,et al. Effervescent atomization at injection pressures in the MPa range[J]. Atomization and Sprays,1999,9(6):651-667. doi: 10.1615/atomizspr.v9.i6.50
    [10] SATAPATHY M R, SOVANI S D, SOJKA P E, et al. The effect of ambient density on the performance of an effer-vescent atomizer operating in the MPa injection pressure range[C]//Proceedings of the Technical Meeting of the Central States Section of the Combustion Institute. 1998: 76-80.
    [11] 袁方. 一种机械–气泡雾化油枪的试验研究[D]. 武汉: 华中科技大学, 2011.

    YUAN F. Experimental study on a machinery-bubbles atomized oil gun[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [12] 刘联胜,吴晋湘,韩振兴,等. 小流量气泡雾化喷嘴研究[J]. 燃烧科学与技术,2001,7(2):182-185. doi: 10.3321/j.issn:1006-8740.2001.02.019

    LIU L S,WU J X,HAN Z X,et al. Studies on low mass flow-rate effervescent atomizer[J]. Journal of Combustion Science and Technology,2001,7(2):182-185. doi: 10.3321/j.issn:1006-8740.2001.02.019
    [13] 周进华. 小油量气泡雾化喷嘴的试验研究[D]. 武汉: 华中科技大学, 2011.

    ZHOU J H. Experimental studies of effervescent atomizers at low mass flow rate[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [14] JEDELSKÝ J,JÍCHA M. Spray characteristics and liquid distribution of multi-hole effervescent atomisers for indus-trial burners[J]. Applied Thermal Engineering,2016,96:286-296. doi: 10.1016/j.applthermaleng.2015.11.079
    [15] ZHAO F, REN Z B, XU B, et al. Brief overview of effervescent atomizer application[C]//Proc of the 3rd International Conference on Fluid Mechanics and Industrial Application. 2019.
    [16] STÄHLE P,GAUKEL V,SCHUCHMANN H P. Investiga-tion on the applicability of the effervescent atomizer in spray drying of foods: influence of liquid viscosity on nozzle internal two-phase flow and spray characteristics[J]. Journal of Food Process Engineering,2015,38(5):474-487. doi: 10.1111/jfpe.12178
    [17] STÄHLE P,GAUKEL V,SCHUCHMANN H P. Comparison of an effervescent nozzle and a proposed air-core-liquid-ring(ACLR)nozzle for atomization of viscous food liquids at low air consumption[J]. Journal of Food Process Engineering,2017,40(1):e12268. doi: 10.1111/jfpe.12268
    [18] WITTNER M O,KARBSTEIN H P,GAUKEL V. Spray performance and steadiness of an effervescent atomizer and an air-core-liquid-ring atomizer for application in spray drying processes of highly concentrated feeds[J]. Chemical Engineering and Processing - Process Intensification,2018,128:96-102. doi: 10.1016/j.cep.2018.04.017
    [19] WILSON S A, ASAR G M, ELSHAHAWY E M. Study of cold spray and combustion stability of effervescent atomize[C]// Proc of the 18th International Conference on Aerospace Sciences and Aviation Technology. 2019.
    [20] 孙春华,宁智,乔信起,等. 气液两相流流型影响喷嘴喷雾形态及液滴粒径分布[J]. 农业工程学报,2019,35(12):29-37. doi: 10.11975/j.issn.1002-6819.2019.12.004

    SUN C H,NING Z,QIAO X Q,et al. Gas-liquid two-phase flow pattern affecting spray shape and droplet size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):29-37. doi: 10.11975/j.issn.1002-6819.2019.12.004
    [21] 刘联胜,吴晋湘,韩振兴,等. 气泡雾化喷嘴在不同液体物性下的喷雾特性研究[J]. 热科学与技术,2002,1(2):128-132. doi: 10.13738/j.issn.1671-8097.2002.02.008

    LIU L S,WU J X,HAN Z X,et al. Studies of effervescent atomization at different physical properties of spray fluid[J]. Journal of Thermal Science and Technology,2002,1(2):128-132. doi: 10.13738/j.issn.1671-8097.2002.02.008
    [22] RAHMAN M A,BALZAN M,HEIDRICK T,et al. Effects of the gas phase molecular weight and bubble size on efferves- cent atomization[J]. International Journal of Multiphase Flow,2012,38(1):35-52. doi: 10.1016/j.ijmultiphaseflow.2011.08.013
    [23] LIU M,DUAN Y F,ZHANG T N. Evaluation of effervesc-ent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer[J]. Experimental Ther-mal and Fluid Science,2010,34(6):657-665. doi: 10.1016/j.expthermflusci.2009.12.007
    [24] KLEINHANS A,HORNFISCHER B,GAUKEL V,et al. Influence of viscosity ratio and initial oil drop size on the oil drop breakup during effervescent atomization[J]. Chemical Engineering and Processing - Process Intensification,2016,109:149-157. doi: 10.1016/j.cep.2016.09.006
    [25] 梁晓燕,王绪论. 气泡雾化喷嘴雾化性能的试验研究[J]. 锅炉制造, 2008(6):28-32. doi: 10.3969/j.issn.1674-1005.2008.06.008

    LIANG X Y,WANG X L. Test studies on the spray charac- teristics of effervescent atomizers[J]. Boiler Manufacturing, 2008(6):28-32. doi: 10.3969/j.issn.1674-1005.2008.06.008
    [26] 叶安道. 气泡雾化进料喷嘴性能的研究[J]. 炼油技术与工程,2015,45(11):43-46. doi: 10.3969/j.issn.1002-106X.2015.11.010

    YE A D. Study on performances of effervescent atomizing feed nozzle[J]. Petroleum Refinery Engineering,2015,45(11):43-46. doi: 10.3969/j.issn.1002-106X.2015.11.010
    [27] 刘联胜,王露露,于祥,等. 混合室结构对气泡雾化喷嘴喷雾特性的影响[J]. 热科学与技术,2017,16(2):114-119. doi: 10.13738/j.issn.1671-8097.2017.02.005

    LIU L S,WANG L L,YU X,et al. Influences of mixing chamber structures on spry characteristics of effervescent atomizers[J]. Journal of Thermal Science and Technology,2017,16(2):114-119. doi: 10.13738/j.issn.1671-8097.2017.02.005
    [28] 赵志洪,楚显玉. 气泡雾化喷嘴内部流场流型数值分析[J]. 河南科技,2018(25):71-75. doi: 10.3969/j.issn.1003-5168.2018.25.025

    ZHAO Z H,CHU X Y. The numerical simulation of two-phase flow pattern inside effervescent atomizer[J]. Journal of Henan Science and Technology,2018(25):71-75. doi: 10.3969/j.issn.1003-5168.2018.25.025
    [29] ALIZADEH KAKLAR Z,ANSARI M R. Numerical analysis of the internal flow and the mixing chamber length effects on the liquid film thickness exiting from the effervescent atomizer[J]. Journal of Thermal Analysis and Calorimetry,2019,135(3):1881-1890. doi: 10.1007/s10973-018-7485-3
    [30] OCHOWIAK M. Discharge coefficient of effervescent atomi- zers with the swirl motion phenomenon[J]. Experimental Thermal and Fluid Science,2016,79:44-51. doi: 10.1016/j.expthermflusci.2016.06.026
    [31] OCHOWIAK M. The experimental studies on atomization for conical twin-fluid atomizers with the swirl motion pheno- menon[J]. Chemical Engineering and Processing - Process Intensification,2016,109:32-38. doi: 10.1016/j.cep.2016.08.010
    [32] 孙春华,宁智,乔信起,等. 气泡雾化喷嘴泡状流喷雾特征试验与仿真[J]. 农业机械学报,2019,50(10):367-374,409. doi: 10.6041/j.issn.1000-1298.2019.10.043

    SUN C H,NING Z,QIAO X Q,et al. Experiment and simulation on spray characteristics of effervescent atomizer within bubbly flow[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):367-374,409. doi: 10.6041/j.issn.1000-1298.2019.10.043
    [33] 王文杰,郑学波,白博峰. 气泡雾化喷嘴雾化特性实验研究[J]. 工程热物理学报,2019,40(4):834-838.

    WANG W J,ZHENG X B,BAI B F. Experimental study on the characteristics of effervescent atomization[J]. Journal of Engineering Thermophysics,2019,40(4):834-838.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  294
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-06-18
  • 录用日期:  2021-07-05
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日