留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转帽罩结冰相似准则的冰风洞试验研究

张丽芬 葛鑫 张斐 刘振侠 马栋 吕维进

张丽芬,葛 鑫,张 斐,等. 旋转帽罩结冰相似准则的冰风洞试验研究[J]. 实验流体力学,2021,35(4):52-59 doi: 10.11729/syltlx20200166
引用本文: 张丽芬,葛 鑫,张 斐,等. 旋转帽罩结冰相似准则的冰风洞试验研究[J]. 实验流体力学,2021,35(4):52-59 doi: 10.11729/syltlx20200166
ZHANG L F,GE X,ZHANG F,et al. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):52-59. doi: 10.11729/syltlx20200166
Citation: ZHANG L F,GE X,ZHANG F,et al. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):52-59. doi: 10.11729/syltlx20200166

旋转帽罩结冰相似准则的冰风洞试验研究

doi: 10.11729/syltlx20200166
基金项目: 结冰与防除冰重点实验室开放课题(IADL20190104)
详细信息
    作者简介:

    张丽芬:(1980-),女,河北石家庄人,副教授,博士。研究方向:航空发动机结冰/防冰的数值和实验研究以及摄入冰晶的研究。通信地址:西安市长安区东祥路1号西北工业大学长安校区动力与能源学院(710129)。E-mail:zhanglifen@nwpu.edu.cn

    通讯作者:

    E-mail:zhanglifen@nwpu.edu.cn

  • 中图分类号: V216.5; V233.94

An ice wind tunnel test study on the scaling law of a rotating cone

  • 摘要: 为了验证旋转帽罩冰风洞试验相似准则的适用性,开展了旋转帽罩表面结冰过程研究,推导了旋转帽罩结冰相似准则。采用底面直径100 mm、锥角80°的旋转锥作为原尺寸模型,底面直径50 mm、锥角80°的旋转锥作为缩比模型,进行不同工况冰风洞试验。通过图像法采集了帽罩表面冰形,并将冰形进行无量纲化处理,对比了原尺寸模型与缩比模型的结冰冰形。结果表明:对于明冰工况,帽罩前半部分冰形吻合较好,帽罩后半部分吻合欠佳;对于霜冰工况,全尺寸模型与缩比模型的冰形吻合良好。对造成这一现象的原因进行了分析,并提出改进的建议。
  • 图  1  冰风洞示意图

    Figure  1.  Sketch of icing wind tunnel

    图  2  试验件一(100 mm帽罩)

    Figure  2.  The 100 mm cone

    图  3  试验件二(50 mm帽罩)

    Figure  3.  The 50 mm cone

    图  4  主轴电机

    Figure  4.  The spindle motor

    图  5  试验件安装结构

    Figure  5.  Installation of test pieces

    图  6  明冰工况试验图

    Figure  6.  Experimental diagram of glaze ice conditions

    图  7  霜冰工况试验图

    Figure  7.  Experimental diagram of rime ice conditions

    图  8  明冰工况冰形图

    Figure  8.  Ice shape of glaze ice conditions

    图  9  霜冰工况冰形图

    Figure  9.  Ice shape of rime ice conditions

    图  10  无量纲冰形图

    Figure  10.  Dimensionless ice diagrams

    表  1  明冰工况

    Table  1.   Glaze ice conditions

    Ω/(r·min–1dw /μmLWC/(g·m–3t/sv/(m·s–1T/K总压/PaL/m
    原型帽罩(工况1) 1200.0 30.00 1.00 20.0 50 264 101325 0.10
    缩比帽罩(工况2) 1697.1 19.71 1.41 7.1 50 264 101325 0.05
    下载: 导出CSV

    表  2  霜冰工况

    Table  2.   Rime ice conditions

    Ω/(r·min–1dw /μmLWC/(g·m–3t/sv/(m·s–1T/K总压/PaL/m
    原型帽罩(工况3) 1200.0 30.00 0.80 20.0 50 253 101325 0.10
    缩比帽罩(工况4) 1697.1 19.71 1.11 7.1 50 253 101325 0.05
    下载: 导出CSV
  • [1] AL-KHALIL K, SALAMON L, TENISON G. Development of the cox icing research facility[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-97
    [2] SOEDER R, SHELDON D, ANDRACCHIO C, et al. NASA Lewis icing research tunnel user manual[R]. NASA TM-107159, 1996.
    [3] HERMAN E. Goodrich icing wind tunnel overview, improvements and capabilities[R]. AIAA 2006-862, 2006. doi: 10.2514/6.2006-862
    [4] VECCHIONE L, De MATTEIS P. An overview of the CIRA icing wind tunnel[R]. AIAA 2003-900. doi: 10.2514/6.2003-900
    [5] 祖孝勇,张林,肖斌,等. 3 m×2 m结冰风洞总压探针和皮托管研制[J]. 实验流体力学,2016,30(4):76-80. doi: 10.11729/syltlx20160006

    ZU X Y,ZHANG L,XIAO B,et al. Study and development of total pressure probe and pitot tube in 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2016,30(4):76-80. doi: 10.11729/syltlx20160006
    [6] 王宗衍. 冰风洞与结冰动力学[J]. 制冷学报,1999,20(4):15-17.

    WANG Z Y. Icing wind tunnel and icing aerodynamics[J]. Refrigeration Journal,1999,20(4):15-17.
    [7] RUFF G A. Analysis and verification of the icing scaling equations. volume 1[R]. Defense Technical Information Center, 1985. doi: 10.21236/ada162226
    [8] RUFF G. Verification and application of the icing scaling equations[R]. AIAA-86-0481, 1986. doi: 10.2514/6.1986-481
    [9] SAEED F,SELIG M S,BRAGG M B. Design of subscale airfoils with full-scale leading edges for ice accretion testing[J]. Journal of Aircraft,1997,34(1):94-100. doi: 10.2514/2.2140
    [10] SAEED F, SELIG M, BRAGG M, et al. Experimental validation of the hybrid airfoil design procedure for full-scale ice accretion simulation[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-199
    [11] ANDERSON D. Rime-, mixed- and glaze-ice evaluations of three scaling laws[R]. AIAA 94-0718, 1994. doi: 10.2514/6.1994-718
    [12] ANDERSON D. Methods for scaling icing test conditions[R]. AIAA-95-0540, 1995. doi: 10.2514/6.1995-540
    [13] ANDERSON D. Further evaluation of traditional icing research tunnel validation studies[R]. AIAA 96-0633, 1996.
    [14] CANACCI V, GONSALEZ J, SPERA D, et al. Scale model Icing Research Tunnel validation studies[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-706
    [15] ANDERSON D, RUFF G. Evaluation of methods to select scale velocity in icing scaling tests[R]. AIAA 99-0244, 1999. doi: 10.2514/6.1999-244
    [16] ANDERSON D N. Manual of Scaling Methods[R]. NASA/CR- 2004-212875, 2004.
    [17] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
    [18] 周志宏,易贤,桂业伟,等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学,2016,30(2):20-25. doi: 10.11729/syltlx20160013

    ZHOU Z H,YI X,GUI Y W,et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):20-25. doi: 10.11729/syltlx20160013
    [19] 易贤,周志宏,杜雁霞,等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学,2016,30(2):14-19. doi: 10.11729/syltlx20160016

    YI X,ZHOU Z H,DU Y X,et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):14-19. doi: 10.11729/syltlx20160016
    [20] LI L K, HU H. An experimental study of dynamic ice accretion process on aero-engine spinners[R]. AIAA 2017-0511, 2017. doi: 10.2514/6.2017-0551
    [21] 王健,胡娅萍,吉洪湖,等. 旋转整流罩积冰生长与脱落过程的实验[J]. 航空动力学报,2014,29(6):1352-1357. doi: 10.13224/j.cnki.jasp.2014.06.013

    WANG J,HU Y P,JI H H,et al. Experiment of ice accrection and shedding on rotating spinner[J]. Journal of Aerospace Power,2014,29(6):1352-1357. doi: 10.13224/j.cnki.jasp.2014.06.013
    [22] CHEN N L,JI H H,HU Y P,et al. Experimental study of icing accretion on a rotating conical spinner[J]. Heat and Mass Transfer,2015,51(12):1717-1729. doi: 10.1007/s00231-015-1536-0
    [23] 胡娅萍,吉洪湖,王健,等. 锥角对旋转整流罩积冰影响的模拟实验[J]. 航空动力学报,2014,29(3):495-503. doi: 10.13224/j.cnki.jasp.2014.03.003

    HU Y P,JI H H,WANG J,et al. Experiment on effect of cone angle on ice accretion of rotating spinner[J]. Journal of Aerospace Power,2014,29(3):495-503. doi: 10.13224/j.cnki.jasp.2014.03.003
    [24] MU Z D, SHEN X B, LIN G P, et al. Numerical simulation for ice accretion on rotating cowling considering water film shedding[R]. AIAA 2016-2187, 2016. doi: 10.2514/6.2016-2187
    [25] 赵秋月,董威,朱剑鋆. 发动机旋转整流帽罩的水滴撞击特性分析[J]. 燃气涡轮试验与研究,2011,24(4):32-35. doi: 10.3969/j.issn.1672-2620.2011.04.009

    ZHAO Q Y,DONG W,ZHU J J. Droplets impinging characteristic analysis of the rotating fairing of aero-engine[J]. Gas Turbine Experiment and Research,2011,24(4):32-35. doi: 10.3969/j.issn.1672-2620.2011.04.009
    [26] 吴孟龙,常士楠,冷梦尧,等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报,2014,40(9):1263-1267. doi: 10.13700/j.bh.1001-5965.2013.0559

    WU M L,CHANG S N,LENG M Y,et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1263-1267. doi: 10.13700/j.bh.1001-5965.2013.0559
    [27] ZHANG L F, ZHANG M H, LIU Z X. Collection efficiency of rotating spin in jet engine[C]//Proc of the 22nd International Symposium on Air Breathing Engines Conference. 2015.
    [28] ZHANG L F, ZHANG M H, ZHANG X X, et al. Modeling of ice accretion on rotating cone in aero-engine[R]. AIAA 2016-5059, 2016. doi: 10.2514/6.2016-5059
    [29] BRAGG M B. A similarity analysis of the droplet trajectory equation[J]. AIAA Journal,1982,20(12):1681-1686. doi: 10.2514/3.8004
    [30] 张斐. 旋转帽罩结冰相似试验研究[D]. 西安: 西北工业大学学位论文, 2016.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  309
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-02-25
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日