留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种应用于水流的纹影特性光流测速算法

黄天立 王倩

黄天立,王 倩. 一种应用于水流的纹影特性光流测速算法[J]. 实验流体力学,2021,35(5):1-9 doi: 10.11729/syltlx20200155
引用本文: 黄天立,王 倩. 一种应用于水流的纹影特性光流测速算法[J]. 实验流体力学,2021,35(5):1-9 doi: 10.11729/syltlx20200155
HUANG T L,WANG Q. A schlieren motion estimation method for water flow velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):1-9. doi: 10.11729/syltlx20200155
Citation: HUANG T L,WANG Q. A schlieren motion estimation method for water flow velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):1-9. doi: 10.11729/syltlx20200155

一种应用于水流的纹影特性光流测速算法

doi: 10.11729/syltlx20200155
基金项目: 国家自然科学基金(51976121,51306113)
详细信息
    作者简介:

    黄天立:(1997-),男,湖北鄂州人,硕士研究生。研究方向:流场纹影图像测速。通信地址:上海市闵行区东川路800号上海交通大学机械与动力工程学院(200240)。Email:huangtianli@sjtu.edu.cn

    通讯作者:

    E-mail:qianwang@sjtu.edu.cn

  • 中图分类号: TB937

A schlieren motion estimation method for water flow velocimetry

  • 摘要: 本论文基于光流优化算法,发展了一种适用于水流的纹影特性光流测速算法。在存在密度梯度的条件下,纹影图像的亮度反映了流场折射率的一阶导数,结合纹影亮度方程和流体连续性方程推导了适用于水的物理约束条件,采用二阶散度–旋度正则化作为空间平滑约束条件,基于两个约束条件构建了能量方程,通过变分法对能量方程进行最小化求解获得速度场。以热羽流为例,使用该算法对浮力羽流纹影图像进行了计算,并与互相关算法和传统光流算法的结果进行了比较。结果显示:本研究提出的算法能更好地体现流动特性,得到更高的空间分辨率。该方法基于纹影图像,无需在流场中添加示踪粒子,对流场无干扰,具有结构简单、使用方便等优点。
  • 图  1  图像相关测速法原理[8]

    Figure  1.  Schematic of image-correlation velocimetry algorithm[8]

    图  2  扩展光源纹影系统示意图

    Figure  2.  Diagram of schlieren system with an extended light source

    图  3  浮力羽流发生装置示意图

    Figure  3.  Diagram of buoyant plume generator

    图  4  “Z”形纹影装置示意图

    Figure  4.  Diagram of Z-type Schlieren arrangement

    图  5  原始纹影图像

    Figure  5.  Original schlieren image

    图  6  三种方法计算的流场速度结果

    Figure  6.  Velocity results of three methods

    图  7  三种方法计算流场速度的局部展示

    Figure  7.  Velocity contour of the selected part using three methods

    图  8  垂直速度分量沿直线的分布

    Figure  8.  Distribution of vertical velocity component along a line

    图  9  垂直速度分量的平均速度云图和矢量图

    Figure  9.  Mean velocity contours and vectors of vertical velocity component

    表  1  与水的密度相关的参数

    Table  1.   Coefficient related to the density of water

    a2a1a0b2b1b0
    1.4578×10–9–2.3505×10–65.3267×10–3–4.8538×10–77.5956×10–43.7763
    下载: 导出CSV

    表  2  水温0~100 ℃时水的密度

    Table  2.   Density of water in the range 0-100 ℃

    T/℃01020304050
    ρ/(g·cm–30.999 840.999 700.998 210.995 650.992 220.988 03
    T/℃60708090100
    ρ/(g·cm–30.983200.977780.971820.965350.95840
    下载: 导出CSV
  • [1] 金光,焦晶晶,吴晅. 典型流场测速技术应用研究进展[J]. 矿山机械,2015,43(12):10-15. doi: 10.16816/j.cnki.ksjx.2015.12.003

    JIN G,JIAO J J,WU X. Research progress on application of typical flow field velocimetry technology[J]. Mining & Processing Equip-ment,2015,43(12):10-15. doi: 10.16816/j.cnki.ksjx.2015.12.003
    [2] 冯旺聪,郑士琴. 粒子图像测速(PIV)技术的发展[J]. 仪器仪表用户,2003,10(6):1-3. doi: 10.3969/j.issn.1671-1041.2003.06.001

    FENG W C,ZHENG S Q. The development of particle image velocimetry[J]. Electronic Instrumentation Customer,2003,10(6):1-3. doi: 10.3969/j.issn.1671-1041.2003.06.001
    [3] MERZKIRCH W,KAUFFMAN C W. Flow visualization[J]. Physics Today,1975,28(11):66-67. doi: 10.1063/1.3069208
    [4] FUJISAWA N,FUJITA Y,YANAGISAWA K,et al. Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet[J]. Experimental Thermal and Fluid Science,2018,94:159-167. doi: 10.1016/j.expthermflusci.2018.02.012
    [5] PETR V, NIECZKOSKI E, LOZANO E. Shadowgraph optical technique for measuring the shock hugoniot from standard electric detonators[M]//Advancement of Optical Methods in Experimental Mechanics, Volume 3. Cham: Springer International Publishing, 2016: 279-293. doi: 10.1007/978-3-319-41600-7_36
    [6] SOSA R, ARNAUD E, MÉMIN É, et al. Schlieren Image Velocimetry applied to EHD flow[C]//Proc of International Symposium on Electro-hydrodynamics. 2006.
    [7] SETTLES G S. Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media[M]. Berlin, Heidelberg: Springer, 2001.
    [8] KEGERISE M A, SETTLES G S. Schlieren image-correlation velocimetry and its application to free-convection flows[EB/OL]. https://www.mne.psu.edu/PSGDL/Pubs/2000-Kegerise-ISFV.pdf.
    [9] PRAZDNY K. Egomotion and relative depth map from optical flow[J]. Biological Cybernetics,1980,36(2):87-102. doi: 10.1007/BF00361077
    [10] HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
    [11] MARTÍNEZ-GONZÁLEZ A,MORENO-HERNÁNDEZ D,GUERRERO-VIRAMONTES J A. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images[J]. Applied Optics,2013,52(22):5562-5569. doi: 10.1364/AO.52.005562
    [12] SUTER D. Motion estimation and vector splines[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1994: 939-942. doi: 10.1109/CVPR.1994.323929
    [13] LIU T S,SHEN L X. Fluid flow and optical flow[J]. Journal of Fluid Mechanics,2008,614:253-291. doi: 10.1017/s0022112008003273
    [14] ARNAUD E, MÉMIN É, SOSA R, et al. A fluid motion estimator for schlieren image velocimetry[C]//Computer Vision - ECCV 2006, 2006: 198-210. doi: 10.1007/11744023_16
    [15] WANG Q,WU Y,CHENG H T,et al. A schlieren motion estimation method for seedless velocimetry measurement[J]. Experimental Ther-mal and Fluid Science,2019,109:109880. doi: 10.1016/j.expthermflusci.2019.109880
    [16] 梅笑寒,王倩,王江涛,等. 纹影特性测速算法修正及权重系数取值研究[J]. 中国科技论文,2020,15(6):694-700. doi: 10.3969/j.issn.2095-2783.2020.06.015

    MEI X H,WANG Q,WANG J T,et al. Correction and weight parameters study of speed measurement algorithm for schlieren characteristics[J]. China Sciencepaper,2020,15(6):694-700. doi: 10.3969/j.issn.2095-2783.2020.06.015
    [17] GOLDSTEIN R S. Fluid mechanics measurement[EB/OL]. Washington: Hemisphere Publishing Corporation, 1983.
    [18] WEISS L,TAZIBT A,TIDU A,et al. Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa[J]. Journal of Chemical Physics,2012,136(12):124201. doi: 10.1063/1.3698481
    [19] LIDE D R. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data[EB/OL]. CRC Press. https://ptabdata.blob.core.windows.net/files/2017/IPR2017-01493/v62_Ex.%201062%20-%20CRC%20Handbook%20of%20Chemistry%20and%20Physics.pdf.
    [20] 成昊天. 基于纹影成像的湍流运动算法研究[D]. 上海: 上海交通大学, 2019: 54-60.

    CHENG H T. Study on turbulent motion algorithm based on schlieren images[D]. Shanghai: Shanghai Jiao Tong University, 2019: 54-60.
    [21] GONO T,SYUTO T,YAMAGATA T,et al. Time-resolved scanning stereo PIV measurement of three-dimensional velocity field of highly buoyant jet[J]. Journal of Visualization,2012,15(3):231-240. doi: 10.1007/s12650-012-0129-y
    [22] THIELICKE W,STAMHUIS E J. PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software,2014,2(1):30. doi: 10.5334/jors.bl
    [23] SHAVIT U,LOWE R J,STEINBUCK J V. Intensity Capping: a simple method to improve cross-correlation PIV results[J]. Experi-ments in Fluids,2007,42(2):225-240. doi: 10.1007/s00348-006-0233-7
    [24] SCARANO F,RIETHMULLER M L. Iterative multigrid approach in PIV image processing with discrete window offset[J]. Experiments in Fluids,1999,26(6):513-523. doi: 10.1007/s003480050318
    [25] SUN D Q, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles[C]//Proc of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010: 2432-2439. doi: 10.1109/CVPR.2010.5539939
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-02-21
  • 网络出版日期:  2021-09-29

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日