留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆形肋柱通道强化换热流动机理实验研究

段敬添 张科 徐进 雷蒋 武俊梅

段敬添,张 科,徐 进,等. 圆形肋柱通道强化换热流动机理实验研究[J]. 实验流体力学,2021,35(4):10-18 doi: 10.11729/syltlx20200134
引用本文: 段敬添,张 科,徐 进,等. 圆形肋柱通道强化换热流动机理实验研究[J]. 实验流体力学,2021,35(4):10-18 doi: 10.11729/syltlx20200134
DUAN J T,ZHANG K,XU J,et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):10-18. doi: 10.11729/syltlx20200134
Citation: DUAN J T,ZHANG K,XU J,et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):10-18. doi: 10.11729/syltlx20200134

圆形肋柱通道强化换热流动机理实验研究

doi: 10.11729/syltlx20200134
基金项目: 陕西省自然科学基金(2019JM-382)
详细信息
    作者简介:

    段敬添:(1996-),男,河南洛阳人,博士研究生。研究方向:先进冷却技术,实验流体力学。通信地址:陕西省西安市碑林区咸宁西路28号西安交通大学兴庆校区(710049)。E-mail:djt122196@stu.xjtu.edu.cn

    通讯作者:

    E-mail:kezhang@mail.xjtu.edu.cn

  • 中图分类号: V231.1

Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins

  • 摘要: 圆形肋柱广泛应用于涡轮叶片内部尾缘强化换热通道。针对圆形肋柱通道强化换热流动机理开展了实验研究,利用PIV技术得到相同雷诺数Re(1.0×104或2.0×104)下通道中心面的流场分布,并与稳态液晶测温实验得到的通道端壁努塞尔数Nu分布进行对比。结果表明:对于圆形肋柱通道,肋柱下游尾迹区后横向速度脉动强度分布和端壁Nu分布相似,而流动充分发展后,小尺度脉动增强,湍流动能(Turbulent Kinetic Energy,TKE)和Nu的分布都非常均匀;随着Re的增大,横向速度脉动强度和端壁传热强化都明显下降,说明圆形肋柱下游涡脱落带来的强烈横向速度脉动是当地换热增强的主要原因,而其下游小尺度的速度脉动会使局部换热更加均匀。
  • 图  1  流动实验设备和PIV布置说明图

    Figure  1.  Illustration of flow facility and PIV setup

    图  2  测量区域圆柱阵列排布和尺寸说明示意图

    Figure  2.  Orientation and dimension of pin fin array in the measurement domain

    图  3  Re =1×104时端壁Nu分布与测量平面内速度场统计量对比

    Figure  3.  Comparison between Nusselt number distribution on the end wall and velocity field statistics in the measured plane for Re =1×104

    图  4  NuKtvrmsx/D =6.0处沿y方向的变化曲线

    Figure  4.  Variation of Nu, Kt and vrms along y at x/D =6.0

    图  5  NuvrmsNuKt对应的相关系数曲线

    Figure  5.  The corresponding correlation coefficient between Nu and vrms, Nu and Kt

    图  6  NuKtvrmsx/D =7.5处沿y方向的变化曲线

    Figure  6.  Variation of Nu, Kt and vrms along y at x/D =7.5

    图  7  Re =1×104时,第一排肋柱下游局部瞬时涡量分布

    Figure  7.  Local instantaneous vorticity distribution with velocity vectors downstream of the 1st row for Re =1×104

    图  8  Re =1×104时,x/D =2.0、y/D =3.0处的横向速度时间轨迹

    Figure  8.  Time trace of the cross-stream velocity at x/D =2.0 and y/D =3.0 for Re =1×104

    图  9  Re =1×104时,x/D =2.0、y/D =3.0处的脉动能量频谱

    Figure  9.  Power spectrum of the cross-stream velocity at x/D =2.0 and y/D =3.0 for Re =1×104

    图  10  Re =1×104时,第二排肋柱下游局部瞬时涡量分布

    Figure  10.  Local instantaneous vorticity distribution with velocity vectors downstream of the 2nd row for Re =1×104

    图  11  Re =1×104时,x/D =7.5、y/D =2.0处的横向速度时间轨迹

    Figure  11.  Time trace of the cross-stream velocity at x/D =7.5 and y/D =2.0 for Re =1×104

    图  12  Re =1×104时,x/D =7.5、y/D =2.0处的能量频谱

    Figure  12.  Power spectrum of the cross-stream velocity at x/D =7.5 and y/D =2.0 for Re =1×104

    图  13  Re =2×104时测量平面内的Nu, vrmsKt分布

    Figure  13.  The distributions of Nu, vrms and Kt in the measuring plane for Re =2×104

    图  14  Re =2×104时,第一排肋柱下游局部瞬时涡量分布

    Figure  14.  Local instantaneous vorticity distribution with velocity vectors downstream of the 1st row for Re =2×104

  • [1] SPARROW E M,RAMSEY J W,ALTEMANI C A C. Experiments on in-line pin fin arrays and performance comparisons with staggered arrays[J]. Journal of Heat Transfer,1980,102(1):44-50. doi: 10.1115/1.3244247
    [2] ROTH R,LENK G,COBRY K,et al. Heat transfer in freestanding microchannels with in-line and staggered pin fin structures with clearance[J]. International Journal of Heat and Mass Transfer,2013,67:1-15. doi: 10.1016/j.ijheatmasstransfer.2013.07.097
    [3] XU F Y,PAN Z H,WU H Y. Experimental investigation on the flow transition in different pin-fin arranged microchannels[J]. Microfluid-ics and Nanofluidics,2017,22(1):1-13. doi: 10.1007/s10404-017-2030-4
    [4] HUANG S C,WANG C C,LIU Y H. Heat transfer measurement in a rotating cooling channel with staggered and inline pin-fin arrays using liquid crystal and stroboscopy[J]. International Journal of Heat and Mass Transfer,2017,115(Part A):364-376. doi: 10.1016/j.ijheatmasstransfer.2017.07.040
    [5] SIW S C, FRADENECK A D, CHYU M K, et al. The effects of different pin-fin arrays on heat transfer and pressure loss in a narrow channel[C]//Proceedings of ASME Turbo Expo 2015: Turbine Tech-nical Conference and Exposition. 2015. doi: 10.1115/GT2015-43855
    [6] CHYU M K, SIW S C, MOON H K. Effects of height-to-diameter ratio of pin element on heat transfer from staggered pin-fin arrays[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2009-59814
    [7] CHYU M K,HSING Y C,NATARAJAN V. Convective heat transfer of cubic fin arrays in a narrow channel[J]. Journal of Turbomach-inery,1998,120(2):362-367. doi: 10.1115/1.2841414
    [8] XU J, YAO J X, SU P F, et al. Heat transfer and pressure loss characteristics of pin-fins with different shapes in a wide channel[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017. doi: 10.1115/GT2017-63761
    [9] JIN W, JIA N, WU J M, et al. Numerical study on flow and heat transfer characteristics of pin-fins with different shapes[C]//Proceed-ings of ASME Turbo Expo 2019: Turbomachinery Technical Confe-rence and Exposition. 2019. doi: 10.1115/GT2019-90520
    [10] HUNG S C, HUANG S C, LIU Y H. Influences of the non-uniform pin-fin array on heat transfer distribution in a rotating rectangular channel[C]//Proceedings of ASME Turbo Expo 2018: Turbomach-inery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-76372
    [11] 许相辉,蒋甲利,牛中国,等. 圆柱尾流场的Tomo-PIV测量[J]. 实验流体力学,2015,29(5):60-64. doi: 10.11729/syltlx20150022

    XU X H,JIANG J L,NIU Z G,et al. Measurements of cylinder's wake by Tomo-PIV[J]. Journal of Experiments in Fluid Mechanics,2015,29(5):60-64. doi: 10.11729/syltlx20150022
    [12] 王勇,郝南松,耿子海,等. 基于时间解析PIV的圆柱绕流尾迹特性研究[J]. 实验流体力学,2018,32(1):64-70. doi: 10.11729/syltlx20170099

    WANG Y,HAO N S,GENG Z H,et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics,2018,32(1):64-70. doi: 10.11729/syltlx20170099
    [13] MARAKKOS K,TURNER J T. Vortex generation in the cross-flow around a cylinder attached to an end-wall[J]. Optics & Laser Techno-logy,2006,38(4-6):277-285. doi: 10.1016/j.optlastec.2005.06.014
    [14] KIRKIL G,CONSTANTINESCU G. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder[J]. Physics of Fluids,2015,27(7):075102. doi: 10.1063/1.4923063
    [15] KANNAN K, KHOSHLESSAN M, HERRMANN M, et al. Detailed numerical study of flow and vortex dynamics in staggered pin-fin arrays within a channel[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-57968
    [16] ARMSTRONG J,WINSTANLEY D. A review of staggered array pin fin heat transfer for turbine cooling applications[J]. Journal of Turbomachinery,1988,110(1):94-103. doi: 10.1115/1.3262173
    [17] HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. 2nd ed. Boca Raton: CRC Press, 2012. doi: 10.1201/b13616
    [18] UZOL O,CAMCI C. Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin fin arrays[J]. Journal of Heat Transfer,2005,127(5):458-471. doi: 10.1115/1.1860563
    [19] WON S Y,MAHMOOD G I,LIGRANI P M. Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins[J]. International Journal of Heat and Mass Transfer,2004,47(8-9):1731-1743. doi: 10.1016/j.ijheatmasstransfer.2003.10.007
    [20] DELIBRA G,HANJALIĆ K,BORELLO D,et al. Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment[J]. International Journal of Heat and Fluid Flow,2010,31(5):740-753. doi: 10.1016/j.ijheatfluidflow.2010.03.004
    [21] OTTO M, HODGES J, GUPTA G, et al. Vortical structures in pin fin arrays for turbine cooling applications[C]//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposi-tion. 2019. doi: 10.1115/GT2019-90552
    [22] HAN J C. Turbine blade cooling studies at Texas A& M University: 1980-2004[J]. Journal of Thermophysics and Heat Transfer,2006,20(2):161-187. doi: 10.2514/1.15403
    [23] GOLDSTEIN R J,KARNI J. The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow[J]. Journal of Heat Transfer,1984,106(2):260-267. doi: 10.1115/1.3246667
    [24] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer[M]. Beijing: Higher Education Press, 2006.
  • 加载中
图(14)
计量
  • 文章访问数:  855
  • HTML全文浏览量:  342
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-10
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日