留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击液面形成的液坑形态特征及其重力势能分析

郭通 袁德奎 赵丰泽

郭 通,袁德奎,赵丰泽. 液滴撞击液面形成的液坑形态特征及其重力势能分析[J]. 实验流体力学,2021,35(6):1-11 doi: 10.11729/syltlx20200128
引用本文: 郭 通,袁德奎,赵丰泽. 液滴撞击液面形成的液坑形态特征及其重力势能分析[J]. 实验流体力学,2021,35(6):1-11 doi: 10.11729/syltlx20200128
GUO T,YUAN D K,ZHAO F Z. Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-11. doi: 10.11729/syltlx20200128
Citation: GUO T,YUAN D K,ZHAO F Z. Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-11. doi: 10.11729/syltlx20200128

液滴撞击液面形成的液坑形态特征及其重力势能分析

doi: 10.11729/syltlx20200128
基金项目: 国家自然科学基金(11872271)
详细信息
    作者简介:

    郭通:(1997-),男,四川通江人,硕士。研究方向:海洋水动力及水环境研究。通信地址:天津市津南区天津大学北洋园校区机械工程学院力学系(300350)。E-mail:18782740887@139.com

    通讯作者:

    E-mail:dkyuan@tju.edu.cn

  • 中图分类号: O351.2

Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact

  • 摘要: 用高速相机拍摄了不同直径的液滴(纯净水)以不同速度撞击不同深度的液池的过程,对液坑的形态特征和规律进行了分析。液池较深时,当液坑体积达到最大时,其形状基本为半球形;液池较浅时,受池底限制,液坑不能充分发展,体积达到最大时,形状呈被横切掉底部的半球形。液池较深时,生成的液柱较粗且低,分离出的次生液滴较少;液池较浅时,液柱较高且细,分离出的次生液滴较多。无量纲液坑最大水平长度和无量纲最大深度均随韦伯数增大而增大,液滴直径越大,无量纲液坑最大水平长度和最大深度越小;液池较深时,无量纲液坑最大水平长度和最大深度随液池深度减小而增大,然而,当液池浅至一定程度时,无量纲液坑最大水平长度和最大深度却明显减小。对已有的液坑重力势能模型进行了扩展,并据此分析了液坑重力势能的变化规律,研究发现:液坑的重力势能随液滴初始动能增大而增大;液池较深时,液坑重力势能随液池深度减小而增大;液池较浅时,液坑重力势能与液滴初始动能的比值更低。
  • 图  1  实验装置示意图

    Figure  1.  Experimental set-up

    图  2  液滴撞击深液池后的运动过程(d =3.71 mm,v =4.81 m/s,h0=40 mm)

    Figure  2.  Process of droplet impact on deep liquid pool (d =3.71 mm,v =4.81 m/s,h0=40 mm)

    图  3  液滴撞击浅液池后的运动过程

    Figure  3.  Process of droplet impact on shallow liquid pool

    图  4  液坑形状示意图

    Figure  4.  Schematic diagram of crater shape

    图  5  LH的关系

    Figure  5.  Relationship between L and H

    图  6  完整液坑L/dWe的关系(a~d:不同液滴直径;e~g:不同液池深度)

    Figure  6.  Relationship between L/d and We for complete crater (a-d: different droplet diameters;e-g: different pool depths)

    图  7  完整液坑H/dWe的关系(a~d:液滴直径对比;e~g:液池深度对比)

    Figure  7.  Relationship between H/d and We for complete crater (a-d: different droplet diameters;e-g: different pool depths)

    图  8  非完整液坑L/dWe的关系

    Figure  8.  Relationship between L/d and We for incomplete crater

    图  9  完整液坑系统重力势能与总能量的关系(a~d:不同液滴直径;e~g:不同液池深度)

    Figure  9.  Relationship between gravitational potential energy and total energy of complete crater (a-d: different droplet diameters; e-g: different liquid pool depths)

    图  10  非完整液坑系统重力势能与总能量的关系

    Figure  10.  Relationship between gravitational potential energy and total energy of incomplete crater

    表  1  实验方案及相应参数

    Table  1.   Experimental scheme and parameters

    h0/mmd/mmv/(m·s–1We
    5, 10, 15, 20, 403.71±0.13,
    3.16±0.14,
    2.67±0.11
    2.55~4.81242~1198
    下载: 导出CSV
  • [1] WORTHINGTON A M. On the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London,1876,25(171-178):261-272. doi: 10.1098/rspl.1876.0048
    [2] WORTHINGTON A M,COLE R S. Impact with a liquid surface, Studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London(Series A),1897,189(1):137-148. doi: 10.1098/rsta.1897.0005
    [3] 蔡一坤. 液滴和液面碰撞[J]. 力学学报,1989,21(3):273-279, 385-386. doi: 10.6052/0459-1879-1989-3-1989-305

    CAI Y K. Collision of a water drop on water[J]. Acta Mechanica Sinica,1989,21(3):273-279, 385-386. doi: 10.6052/0459-1879-1989-3-1989-305
    [4] 郑哲敏. 液滴与液面碰撞时发生环形穿入的条件[J]. 力学学报,1990,22(3):337-340. doi: 10.1007/BF02019148

    ZHENG Z M. Condition for occurence of circular penetration during impact of a falling droplet with a fluid[J]. Acta Mechanica Sinica,1990,22(3):337-340. doi: 10.1007/BF02019148
    [5] REIN M. Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research,1993,12(2):61-93. doi: 10.1016/0169-5983(93)90106-K
    [6] BISIGHINI A,COSSALI G E,TROPEA C,et al. Crater evolution after the impact of a drop onto a semi-infinite liquid target[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2010,82(3 Pt 2):036319. doi: 10.1103/PhysRevE.82.036319
    [7] OG̃UZ H N,PROSPERETTI A. Bubble entrainment by the impact of drops on liquid surfaces[J]. Journal of Fluid Mechanics,1990,219:143-179. doi: 10.1017/S0022112090002890
    [8] VANDER WAL R L,BERGER G M,MOZES S D. Droplets splashing upon films of the same fluid of various depths[J]. Experiments in Fluids,2006,40(1):33-52. doi: 10.1007/s00348-005-0044-2
    [9] MANZELLO S L,YANG J C. An experimental study of a water droplet impinging on a liquid surface[J]. Experiments in Fluids,2002,32(5):580-589. doi: 10.1007/s00348-001-0401-8
    [10] CASTILLO-OROZCO E,DAVANLOU A,CHOUDHURY P K, et al. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2015,92(5):053022. doi: 10.1103/PhysRevE.92.053022
    [11] 夏秀文,张新琴,王永江. 液滴与液面碰撞对冲聚合现象研究[J]. 井冈山大学学报(自然科学版),2014,35(6):21-24. doi: 10.3969/j.issn.1674-8085.2014.06.005

    XIA X W,ZHANG X Q,WANG Y J. Study on collision and coalescence phenomenon of a droplet impact on fluid surface[J]. Journal of Jinggangshan University (Natural Sciences Edition),2014,35(6):21-24. doi: 10.3969/j.issn.1674-8085.2014.06.005
    [12] 马慧敏,刘长根,李旭,等. 液滴冲击液面过程中变形特征的实验研究[J]. 实验力学,2019,34(4):600-608. doi: 10.7520/1001-4888-18-016

    MA H M,LIU C G,LI X,et al. Experimental study of deformation characteristics during the process of liquid drop impact liquid surface[J]. Journal of Experimental Mechanics,2019,34(4):600-608. doi: 10.7520/1001-4888-18-016
    [13] 曹刚,余思潇,颜廷涧,等. 不同液池深度下液滴撞击成泡现象[J]. 实验流体力学,2019,33(4):95-99. doi: 10.11729/syltlx20190016

    CAO G,YU S X,YAN T J,et al. Blister formation phenomenon for droplet impact under different liquid pool depths[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):95-99. doi: 10.11729/syltlx20190016
    [14] 裴传康,魏炳乾,左娟莉,等. 椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理[J]. 物理学报,2019,68(20):204703. doi: 10.7498/aps.68.20190541

    PEI C K,WEI B Q,ZUO J L,et al. Numerical investigation of large bubble entrapment mechanism for micron droplet impact on deep pool[J]. Acta Physica Sinica,2019,68(20):204703. doi: 10.7498/aps.68.20190541
    [15] 裴传康,魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究[J]. 物理学报,2018,67(22):224703. doi: 10.7498/aps.67.20181422

    PEI C K,WEI B Q. Numerical investigation of cavity formation mechanism for micron-waterdrop impact on deep pool[J]. Acta Physica Sinica,2018,67(22):224703. doi: 10.7498/aps.67.20181422
    [16] 郑明飞. 双液滴撞击液膜的流动过程研究[J]. 甘肃科技,2020,36(1):84-87. doi: 10.3969/j.issn.1000-0952.2020.01.026
    [17] MICHON G-J,JOSSERAND C,SÉON T. Jet dynamics post drop impact on a deep pool[J]. Physical Review Fluids,2017,2(2):023601. doi: 10.1103/PhysRevFluids.2.023601
    [18] LIANG G T,MUDAWAR I. Review of mass and momentum interactions during drop impact on a liquid film[J]. International Journal of Heat and Mass Transfer,2016,101:577-599. doi: 10.1016/j.ijheatmasstransfer.2016.05.062
    [19] SAHA A,WEI Y J,TANG X Y,et al. Kinematics of vortex ring generated by a drop upon impacting a liquid pool[J]. Journal of Fluid Mechanics,2019,875:842-853. doi: 10.1017/jfm.2019.503
    [20] ENGEL O G. Crater depth in fluid impacts[J]. Journal of Applied Physics,1966,37(4):1798-1808. doi: 10.1063/1.1708605
    [21] MACKLIN W C,METAXAS G J. Splashing of drops on liquid layers[J]. Journal of Applied Physics,1976,47(9):3963-3970. doi: 10.1063/1.323218
    [22] 马慧敏,刘长根,董娇娇. 液滴冲击液面变形特征及其能量转化研究[J]. 水动力学研究与进展(A辑),2019,34(3):283-290. doi: 10.16076/j.cnki.cjhd.2019.03.002

    MA H M,LIU C G,DONG J J. Study of deformation characteristics and energy conversion during the process of droplet impacting on liquid surface[J]. Chinese Journal of Hydrodynamics,2019,34(3):283-290. doi: 10.16076/j.cnki.cjhd.2019.03.002
    [23] HASEGAWA K,NARA T. Energy conservation during single droplet impact on deep liquid pool and jet formation[J]. AIP Advances,2019,9(8):085218. doi: 10.1063/1.5113587
    [24] XU M J,LI C H,WU C P,et al. Regimes during single water droplet impacting on hot ethanol surface[J]. International Journal of Heat and Mass Transfer,2018,116:817-824. doi: 10.1016/j.ijheatmasstransfer.2017.09.030
    [25] 徐明俊. 单液滴与着火液体相互作用动力学特性研究[D]. 合肥: 中国科学技术大学, 2018.

    XU M J. Study of drop impact dynamics on burning liquid[D]. Hefei: University of Science and Technology of China, 2018.
    [26] 范绪君. 水滴撞击油池动力学特性研究[D]. 合肥: 合肥工业大学, 2019.

    FAN X J. Experimental study of droplet impact dynamics on liquid pool[D]. Hefei: Hefei University of Technology, 2019.
    [27] 刘东. 高效液滴冲击冷却的研究[D]. 北京: 华北电力大学, 2019.

    LIU D. Investigation on efficient droplet spray cooling[D]. Beijing: North China Electric Power University, 2019. doi: 10.27140/d.cnki.ghbbu.2019.000923
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-17
  • 修回日期:  2020-11-27
  • 网络出版日期:  2021-11-12

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日