留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝-铝超高速撞击气化产物运动特性测量与分析

杜雪飞 石安华 马兆侠 黄洁 柳森

杜雪飞,石安华,马兆侠,等. 铝-铝超高速撞击气化产物运动特性测量与分析[J]. 实验流体力学,2021,35(4):83-91 doi: 10.11729/syltlx20200071
引用本文: 杜雪飞,石安华,马兆侠,等. 铝-铝超高速撞击气化产物运动特性测量与分析[J]. 实验流体力学,2021,35(4):83-91 doi: 10.11729/syltlx20200071
DU X F,SHI A H,MA Z X,et al. Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):83-91. doi: 10.11729/syltlx20200071
Citation: DU X F,SHI A H,MA Z X,et al. Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):83-91. doi: 10.11729/syltlx20200071

铝-铝超高速撞击气化产物运动特性测量与分析

doi: 10.11729/syltlx20200071
详细信息
    作者简介:

    杜雪飞:(1988-),男,四川绵阳人,硕士,助理工程师。研究方向:超高速撞击辐射测量。通信地址:四川省绵阳市涪城区二环路南段6号15信箱301分箱(621000)。E-mail:179431428@qq.com

    通讯作者:

    E-mail:liusen@cardc.cn

  • 中图分类号: O432.1;V11

Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact

  • 摘要: 根据超高速撞击条件下气化产物的产生机理和辐射特性,设计了获取气化产物冲击波运动速度的序列成像测量方法,并在超高速碰撞靶上开展了直径4.5 mm铝球以6 km/s左右速度撞击2A12中厚铝板的试验,测量得到了撞击气化产物冲击波的运动序列图像,对撞击气化产物冲击波运动半径、速度、气化产物总能和波后流场参量分布等进行了定量分析,获得了铝-铝超高速撞击气化产物的运动特性。研究表明:设计的测量方法能很好地获得撞击气化产物冲击波不同时刻的位置信息,可为分析气化产物运动特性提供数据支持;测量所得气化产物冲击波运动半径随时间变化关系与Taylor点爆炸模型拟合结果相符,证明了该模型理论可用于超高速撞击气化产物运动特性相关研究。
  • 图  1  试验测量布局示意图

    Figure  1.  Schematic diagram of test measurement layout

    图  2  铝-铝超高速撞击气化产物辐射光谱分布及辐射强度时间演化特性

    Figure  2.  UV-characteristic spectral radiation of Al-Al hypervelocity impact

    图  3  超高速撞击气化产物膨胀运动序列图像

    Figure  3.  Sequence images of expansion motion of hypervelocity impact vapor clouds

    图  4  撞击气化产物辐射强度信号采集及曝光时刻监测

    Figure  4.  Radiation intensity signal acquisition and exposure time monitor-ing of impact-induced vapor

    图  5  像素标定静拍照片

    Figure  5.  Pixel calibration photo

    图  6  气化产物冲击波序列界面坐标位置

    Figure  6.  Coordinate position of sequence interfaces of impact vapor shock wave

    图  7  气化产物冲击波运动半径与时间的关系

    Figure  7.  The relation between the expanding radius and time of impact vapor shock wave

    图  8  气化产物冲击波运动速度随角度变化关系

    Figure  8.  The relation between the velocity of vapor shock wave and angle

    图  9  各径向上单位立体角内撞击气化产物的能量

    Figure  9.  The energy of impact vapor per unit solid angle in different directions

    图  10  超高速撞击气化产物冲击波内流场参量分布图

    Figure  10.  The parameter distribution of the flow field behind the impact vapor shock wave

    表  1  试验基本参数

    Table  1.   Basic test parameters

    试验编号碰撞速度/(km·s–1靶室压力/Pa
    16.1194
    26.13232
    35.947100
    下载: 导出CSV

    表  2  气化产物冲击波运动半径测量值

    Table  2.   Measured expanding radius of impact vapor shock wave

    试验编号运动方向${t'_0}$/μsR1/mmR2/mmR3/mmR4/mmR5/mm
    2 $ {0}^{\circ } $ 0.95 8.89 23.62 38.67 50.26 58.82
    $ {90}^{\circ } $ 0.77 4.47 11.96 17.06 21.60 25.88
    3 $ {0}^{\circ } $ 0.86 15.87 28.66 42.83 54.60
    $ {90}^{\circ } $ 0.89 6.55 11.96 17.51 22.54 28.21
    下载: 导出CSV

    表  3  Taylor模型计算所得气体能量

    Table  3.   Calculated total energy of impact vapor based on Taylor model

    试验编号撞击速度/(km·s–1靶室压力/Pa室温/K运动方向$ {t}_{0}^{{'}} $/μs$ {E}_{T} $/J
    2 6.132 32 288 $ {0}^{\circ } $ 0.95 19.35
    $ {90}^{\circ } $ 0.77 0.27
    $ {180}^{\circ } $ 0.94 19.39
    3 5.947 100 288 $ {0}^{\circ } $ 0.86 35.15
    $ {90}^{\circ } $ 0.89 0.58
    $ {180}^{\circ } $ 0.83 39.56
    下载: 导出CSV

    表  4  超高速撞击气化产物总能

    Table  4.   The total energy of hypervelocity impact-induced vapor

    试验编号撞击速度/(km·s–1靶室压力/PaE/J
    26.132322.54
    35.9471005.64
    下载: 导出CSV
  • [1] SUGITA S,SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 1. Spectroscopic observations using diatomic molecular emission[J]. Journal of Geophysical Research,2003,108(E6):5051. doi: 10.1029/2002JE001959
    [2] SUGITA S,SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 2. Theoretical modeling[J]. Journal of Geophysical Research,2003,108(E6):5052. doi: 10.1029/2002JE001960
    [3] TAYLOR G. The formation of a blast wave by a very intense explosion. Ⅰ. Theoretical discussion[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1950,201(1065):159-174. doi: 10.1098/rspa.1950.0049
    [4] TAYLOR G. The formation of a blast wave by a very intense explosion. Ⅱ. The atomic explosion of 1945[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1950,201(1065):175-186. doi: 10.1098/rspa.1950.0050
    [5] SCHULTZ P H. Effect of impact angle on vaporization[J]. Journal of Geophysical Research: Planets,1996,101(E9):21117-21136. doi: 10.1029/96JE02266
    [6] SUGITA S,SCHULTZ P H,ADAMS M A. Spectroscopic measurements of vapor clouds due to oblique impacts[J]. Journal of Geophysical Research: Planets,1998,103(E8):19427-19441. doi: 10.1029/98JE02026
    [7] SUGITA S,SCHULTZ P H. Spectroscopic characterization of hypervelocity jetting: Comparison with a standard theory[J]. Journal of Geophysical Research: Planets,1999,104(E12):30825-30845. doi: 10.1029/1999JE001061
    [8] SCHULTZ P H,SUGITA S,EBERHARDY C A,et al. The role of ricochet impacts on impact vaporization[J]. International Journal of Impact Engineering,2006,33(1-12):771-780. doi: 10.1016/j.ijimpeng.2006.09.005
    [9] SCHULTZ P H,EBERHARDY C A. Spectral probing of impact-generated vapor in laboratory experiments[J]. Icarus,2015,248:448-462. doi: 10.1016/j.icarus.2014.10.041
    [10] MIHALY J M,TANDY J D,ADAMS M A,et al. In situ diagnostics for a small-bore hypervelocity impact facility[J]. International Journal of Impact Engineering,2013,62:13-26. doi: 10.1016/j.ijimpeng.2013.05.004
    [11] MIHALY J M,ROSAKIS A J,ADAMS M A,et al. Imaging ejecta and debris cloud behavior using laser side-lighting[J]. Procedia Engineering,2013,58:363-368. doi: 10.1016/j.proeng.2013.05.041
    [12] TANDY J D,MIHALY J M,ADAMS M A,et al. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy[J]. Journal of Applied Physics,2014,116(3):034901. doi: 10.1063/1.4890230
    [13] MIHALY J M,TANDY J D,ROSAKIS A J,et al. Pressure-dependent, infrared-emitting phenomenon in hypervelocity impact[J]. Journal of Applied Mechanics,2015,82(1):011004. doi: 10.1115/1.4028856
    [14] 石安华,柳森,黄洁,等. 铝弹丸超高速撞击铝靶光谱辐射特性实验研究[J]. 宇航学报,2008,29(2):715-717. doi: 10.3873/j.issn.1000-1328.2008.02.061

    SHI A H,LIU S,HUANG J,et al. Spectra measurement of radiation produced by aluminum projectiles impacting aluminum targets at hypervelocity speeds[J]. Journal of Astronautics,2008,29(2):715-717. doi: 10.3873/j.issn.1000-1328.2008.02.061
    [15] 马兆侠,黄洁,石安华,等. 铝球超高速撞击铝板反溅碎片云团辐射特性研究[J]. 实验流体力学,2014,28(2):90-94. doi: 10.11729/syltlx2014pz27

    MA Z X,HUANG J,SHI A H,et al. Study on radiation characteristics of ricochet debris cloud from aluminum plate subjected to hypervelocity impacts by aluminum projectile[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):90-94. doi: 10.11729/syltlx2014pz27
    [16] 马兆侠, 石安华, 黄洁, 等. 超高速撞击闪光的物理建模及数值计算方法[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集. 2017: 703-709.
    [17] MA Z X,SHI A H,LI J L,et al. Radiation mechanism analysis of hypervelocity impact Ejecta cloud[J]. International Journal of Impact Engineering,2020,141:103560. doi: 10.1016/j.ijimpeng.2020.103560
    [18] 邹彪,陈建平,沈中华,等. 激光等离子体的声学诊断研究[J]. 光学学报,1998,18(2):212-216. doi: 10.3321/j.issn:0253-2239.1998.02.016

    ZOU B,CHEN J P,SHEN Z H,et al. Mechanism of laser induced plasma acoustic wave[J]. Acta Optica Sinica,1998,18(2):212-216. doi: 10.3321/j.issn:0253-2239.1998.02.016
    [19] 卞保民,杨玲,陈笑,等. 激光等离子体及点爆炸空气冲击波波前运动方程的研究[J]. 物理学报,2002,51(4):809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    BIAN B M,YANG L,CHEN X,et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica,2002,51(4):809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019
    [20] 唐恩凌,李振波,韩雅菲,等. 超高速碰撞2A12铝板产生闪光辐射的空间演化规律[J]. 发光学报,2017,38(7):944-952. doi: 10.3788/fgxb20173807.0944

    TANG E L,LI Z B,HAN Y F,et al. Spatial evolutionary rules of light flash radiation generated by hypervelocity impact on 2A12 aluminum plate[J]. Chinese Journal of Luminescence,2017,38(7):944-952. doi: 10.3788/fgxb20173807.0944
    [21] 李维新. 一维不定常流与冲击波[M]. 北京: 国防工业出版社, 2003: 330-340.

    LI W X. One-dimensional nonsteady flow and shock waves[M]. Beijing: National Defense Industry Press, 2003: 330-340.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  68
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-07-24
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日