Effect of probe support wake on vibration characteristics of compressor rotor blade
-
摘要: 针对某轴流压气机试验中出现的第一级转子叶片振动应变信号突增现象,开展了不同构型探针支杆尺寸对压气机转子叶片振动特性影响的对比试验。通过对比不同构型探针支杆尺寸、不同安装布局下转子叶片振动信号的变化,证实了进口探针支杆尺寸是诱发转子叶片异常振动的主要原因。同时采用流固耦合数值模拟方法,分析了探针支杆尾迹诱发转子叶片共振的流动机理。研究结果表明:支杆直径为10 mm的圆柱形探针诱发转子叶片发生整转速阶次激振的一阶共振,当探针支杆尺寸减小后,转子叶片振动响应水平显著降低。探针支杆诱发压气机转子叶片共振的扰动频率来源于支杆尾迹诱导频率与支杆通过频率的共同作用,支杆尾迹脱落涡会引起转子叶片进气攻角产生大幅值脉动。Abstract: In order to understand the abnormal phenomenon of sudden increase of the vibration strain of the first rotor blade in an axial flow compressor experiment, the comparison experiment of the effects of different kinds of inlet measurement probes on vibration characteristics of the rotor blades was conducted. By comparing the variation of the rotor blade vibration signals under different installation layouts of inlet measurement probes, it is verified that the abnormal vibration of the rotor blade is caused by the inlet measurement probes. The flow mechanism of the probe support wake inducing the resonance of rotor blade was also analyzed using the fluid-structure coupling numerical simulation method. The investigation results show that the first order resonance of the rotor blade of the axial flow compressor emerges under an engine order excitation condition, which is induced by the cylindrical probe support with the diameter of 10 mm. As the size of the probe support decreases, the level of the rotor blade vibration response is reduced evidently. The disturbance frequency of the probe-support-induced-compressor-rotor-blade-resonance originates from the combined effect of the wake induction frequency and the passing frequency of the probe support. The shedding vortex of the probe support wake can cause large amplitude fluctuation of the inlet attack angle of the rotor blade.
-
表 1 转子叶片振动对比试验结果
Table 1. Experimental results of rotor blade vibration
序号 总压探针 方向探针 附面层探针 运行转速/(r·min-1) 振动信号 1 3 3 1 4457 突增 2 2 1 0 5150 突增 3 1 1 0 5150 突增 4 0 0 0 7691 正常 5 2 0 0 7691 正常 6 2 1(L型) 0 7691 正常 -
[1] JONES M J, BIRCH N T, BRADBROOK S J. Evolutions in aircraft engine design and a vision for the future[R]. ISABE-2002-1014, 2001. [2] BROICHHAUSEN K D, ZIEGLER K U. Supersonic and transonic compressors: past, status and technology trends[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2005-69067 [3] MILLER R J, MOSS R W, AINSWORTH R W, et al. Time-resolved vane-rotor interaction in a high-pressure turbine stage[J]. Journal of Turbomachinery, 2003, 125(1): 1-13. doi: 10.1115/1.1492823 [4] 王英锋, 胡骏, 李传鹏, 等. 上游转子对下游静子叶片气动力的影响[J]. 航空学报, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001WANG Y F, HU J, LI C P, et al. Effects of up-stream rotor on the aerodynamic force on down-stream stator blades[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001 [5] DUDZINSKI T J, KRAUSE L N. Effect of inlet geometry on flow-angle characteristics of miniature total-pressure tubes[R]. NASA TN D-6460, 1971. [6] COLDRICK S, IVEY P, WELLS R. Considerations for using 3D pneumatic probes in high speed axial compressors[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2002-30045 [7] LEPICOVSKY J. Effects of a rotating aerodynamic probe on the flow field of a compressor rotor[R]. NASA/CR-2008-215215, 2008. [8] MA H W, LI S H, WEI W. Effects of probe support on the flow field of a low-speed axial compressor[J]. Journal of Thermal Science, 2014, 23(2): 120-126. doi: 10.1007/s11630-014-0685-7 [9] MA H W, LI S H, WEI W. Effects of probe support on the stall characteristics of a low-speed axial compressor[J]. Journal of Thermal Science, 2016, 25(1): 43-49. doi: 10.1007/s11630-016-0832-4 [10] HE X, MA H W, REN M L, et al. Investigation of the effects of airfoil-probes on the aerodynamic performance of an axial compressor[J]. Chinese Journal of Aeronautics, 2012, 25(4): 517-523. doi: 10.1016/S1000-9361(11)60415-9 [11] XIANG H H, GE N, HOU M J, et al. An experimental investigation of the effects of upstream probe disturbance on compressor cascade performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(7): 1248-1257. doi: 10.1177/0954410016652435 [12] XIANG H H, GE N, GAO J, et al. Experimental investigation of the effect of the probe support tail structure on the compressor cascade flow field[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1): 9-18. doi: 10.1515/tjj-2016-0071 [13] WISLER D C. Core compressor exit stage study. Volume 3: Data and performance report for screening test configurations[R]. NASA CR-159499, 1980. [14] KENYON J A, RABE D C, FLEETER S. Aerodynamic effects on blade vibratory stress variations[J]. Journal of Propulsion and Power, 1999, 15(5): 675-680. doi: 10.2514/2.5492 [15] 张明明, 侯安平, 贺小帆, 等. 进气畸变下压气机叶片强度分析[J]. 航空动力学报, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015ZHANG M M, HOU A P, HE X F, et al. Intensity analysis of blades in axial compressor with inlet distortion[J]. Journal of Aerospace Power, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015 [16] SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades: an IGTI scholar paper[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. 2014. doi: 10.1115/97-GT-533 [17] EKICI K, VOYTOVYCH D, HALL K. Time-linearized navier-stokes analysis of flutter in multistage turbomachines[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-836 [18] 张明明, 李绍斌, 侯安平, 等. 叶轮机械叶片颤振研究的进展与评述[J]. 力学进展, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htmZHANG M M, LI S B, HOU A P, et al. A review of the research on blade flutter in turbomachinery[J]. Advances in Mechanics, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htm [19] DICKMANN H P, SECALL WIMMEL T, SZWEDOWICZ J, et al. Unsteady flow in a turbocharger centrifugal compressor: three-dimensional computational fluid dynamics simulation and numerical and experimental analysis of impeller blade vibration[J]. Journal of Turbomachinery, 2006, 128(3): 455-465. doi: 10.1115/1.2183317 [20] 闫嘉超, 侯安平, 周盛. 非定常耦合流动对叶片动力响应的影响[J]. 航空动力学报, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011YAN J C, HOU A P, ZHOU S. Effect of unsteady cooperative flow on the dynamic response in the rotor of axial compressor[J]. Journal of Aerospace Power, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011 -