留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄原胶水溶液管道流动转捩及不同NaCl质量分数下减阻特性的实验研究

徐晟轩 赵文斌 李明义 林玉莹 李昌烽

徐晟轩,赵文斌,李明义,等. 黄原胶水溶液管道流动转捩及不同NaCl质量分数下减阻特性的实验研究[J]. 实验流体力学,2021,35(4):34-40 doi: 10.11729/syltlx20200041
引用本文: 徐晟轩,赵文斌,李明义,等. 黄原胶水溶液管道流动转捩及不同NaCl质量分数下减阻特性的实验研究[J]. 实验流体力学,2021,35(4):34-40 doi: 10.11729/syltlx20200041
XU S X,ZHAO W B,LI M Y,et al. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):34-40. doi: 10.11729/syltlx20200041
Citation: XU S X,ZHAO W B,LI M Y,et al. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):34-40. doi: 10.11729/syltlx20200041

黄原胶水溶液管道流动转捩及不同NaCl质量分数下减阻特性的实验研究

doi: 10.11729/syltlx20200041
基金项目: 国家自然科学基金(51576092);江苏高校优势学科建设资助项目
详细信息
    作者简介:

    徐晟轩:(1995-),男,江苏盐城人,硕士研究生。研究方向:湍流减阻与流动控制。通信地址:江苏省镇江市京口区学府路301号江苏大学能源与动力工程学院(212013)。E-mail:1334254104@qq.com

    通讯作者:

    E-mail:cfli@ujs.edu.cn

  • 中图分类号: O130.25

Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl

  • 摘要: 在水平光滑圆管内,采用雷诺实验对质量分数为0~400×10–6的黄原胶水溶液的流动转捩特性进行了观测,并通过实验探究了不同质量分数的盐(NaCl)环境对黄原胶溶液减阻特性的影响,测量了(100~300)×10–6的黄原胶溶液在不同NaCl质量分数(0、250×10–6、500×10–6和1000×10–6)下的减阻率与流动雷诺数(Re)、剪切时间之间的关系。结果表明:以广义雷诺数表征时,黄原胶水溶液管道流动转捩的下临界雷诺数随质量分数的增加而上升,近似呈线性变化,而转捩的上临界雷诺数却迅速降低至3000左右;在高雷诺数下,随着NaCl质量分数的增加,黄原胶盐溶液的饱和减阻率显著降低,但在低雷诺数下的减阻效果优于水溶液;黄原胶水溶液的抗剪切性呈质量分数效应,适量盐的加入能略微提高其抗剪切性。
  • 图  1  减阻特性实验装置原理图

    Figure  1.  Schematic of drag reduction characteristic experimental setup

    图  2  黄原胶水溶液转捩雷诺数随质量分数ω的变化

    Figure  2.  Transition Reynolds numbers for different XG solutions, where ${Re'_{{\rm{cr}}}} $ denotes the upper limit and Recr denotes the lower limit

    图  3  黄原胶溶液转捩雷诺数随质量分数的变化(以广义雷诺数表征流速)

    Figure  3.  Transition Reynolds number of XG solution (flow velocity characterized by generalized Reynolds number)

    图  4  不同质量分数的黄原胶溶液在4种NaCl质量分数条件下的减阻率随Re的变化

    Figure  4.  The drag reduction efficiency vs. Re of XG solution in four different mass fractions of salt

    图  5  不同质量分数黄原胶水溶液的抗剪切性(Re =30 000)

    Figure  5.  Shearing resistance of XG aqueous solution (Re =30 000)

    图  6  不同质量分数的黄原胶溶液在不同NaCl质量分数下的抗剪切性(Re =30 000)

    Figure  6.  Shearing resistance of XG solution with different mass fractions of NaCl (Re =30 000)

    表  1  20 ℃时不同质量分数(ω)黄原胶溶液流变参数[18]

    Table  1.   Rheological parameters for different mass fractions of XG solution(20 ℃)

    ω/10–6K/(N·sn·m–2n
    0 0.0010 1.0000
    50 0.0021 0.9515
    100 0.0024 0.9403
    150 0.0039 0.8814
    200 0.0041 0.8860
    250 0.0043 0.8907
    300 0.0062 0.8440
    350 0.0078 0.8224
    400 0.0098 0.7939
    下载: 导出CSV
  • [1] SALEH H M,ANNUAR M S M,SIMARANI K. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation[J]. Ultrasonics Sonochemistry,2017,39:250-261. doi: 10.1016/j.ultsonch.2017.04.038
    [2] WYATT N B,LIBERATORE M W. Rheology and viscosity scaling of the polyelectrolyte xanthan gum[J]. Journal of Applied Polymer Science,2009,114(6):4076-4084. doi: 10.1002/app.31093
    [3] TOMS B A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers[C]// Proc of the 1st International Congress on Rheology. 1948.
    [4] GILES W B,PETTIT W T. Stability of dilute viscoelastic flows[J]. Nature,1967,216(5114):470-472. doi: 10.1038/216470a0
    [5] DRAAD A A,KUIKEN G D C,NIEUWSTADT F T M. Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids[J]. Journal of Fluid Mechanics,1998,377:267-312. doi: 10.1017/s0022112098003139
    [6] SAMANTA D,DUBIEF Y,HOLZNER M,et al. Elasto-inertial turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(26):10557-10562. doi: 10.1073/pnas.1219666110
    [7] CHOUEIRI G H,LOPEZ J M,HOF B. Exceeding the asymptotic limit of polymer drag reduction[J]. Physical Review Letters,2018,120(12):124501. doi: 10.1103/physrevlett.120.124501
    [8] 张根广,张鸣远,杨万英,等. 黄原胶溶液减阻特性实验[J]. 西安交通大学学报,2007,41(9):1092-1095. doi: 10.3321/j.issn:0253-987x.2007.09.020

    ZHANG G G,ZHANG M Y,YANG W Y,et al. Drag reduction in turbulent pipe flows of aqueous Xanthan gum solutions[J]. Journal of Xi'an Jiaotong University,2007,41(9):1092-1095. doi: 10.3321/j.issn:0253-987x.2007.09.020
    [9] 龚迪光,曲占庆,郭天魁,等. 径向井水力压裂摩阻影响因素与计算公式[J]. 钻井液与完井液,2016,33(3):102-106. doi: 10.3696/j.issn.1001-5620.2016.03.021

    GONG D G,QU Z Q,GUO T K,et al. Factors affecting friction loss of hydraulic fracturing in ultra-short radius radial wells and the calculating equation thereof[J]. Drilling Fluid & Completion Fluid,2016,33(3):102-106. doi: 10.3696/j.issn.1001-5620.2016.03.021
    [10] HONG C H,CHOI H J,ZHANG K,et al. Effect of salt on turbulent drag reduction of Xanthan gum[J]. Carbohydrate Polymers,2015,121:342-347. doi: 10.1016/j.carbpol.2014.12.015
    [11] KARAMI H R,RAHIMI M,OVAYSI S. Degradation of drag reducing polymers in aqueous solutions[J]. Korean Journal of Chemi-cal Engineering,2018,35:34-43. doi: 10.1007/s11814-017-0264-1
    [12] JANG H Y,ZHANG K,CHON B H,et al. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution[J]. Journal of Industrial and Engineering Chemistry,2015,21:741-745. doi: 10.1016/j.jiec.2014.04.005
    [13] HABIBPOUR M,KOTEESWARAN S,CLARK P E. Drag reduction behavior of hydrolyzed polyacrylamide/polysaccharide mixed poly-mer solutions: effect of solution salinity and polymer concentration[J]. Rheologica Acta,2017,56(7-8):683-694. doi: 10.1007/s00397-017-1024-1
    [14] 朱波,赵文斌,李明义,等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学,2018,32(5):61-66. doi: 10.11729/syltlx20180035

    ZHU B,ZHAO W B,LI M Y,et al. Experimental study on drag reduction and anti-shearing characteristics of Xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics,2018,32(5):61-66. doi: 10.11729/syltlx20180035
    [15] 禹燕飞, 李昌烽, 赵文斌, 等. 一种高分子聚合物溶液的全流态减阻特性实验装置: 中国, ZL201320028552.4, [P]. 2013-07-17.
    [16] WHITE F M. Fluid Mechanics[M]. 4th Ed. New York: McGraw-Hill Series, 2015.
    [17] WYATT N B,LIBERATORE M W. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions[J]. Soft Matter,2010,6(14):3346. doi: 10.1039/c000423e
    [18] 禹燕飞,李明义,赵文斌,等. 不同直径光滑圆管中黄原胶溶液流动减阻特性的实验研究[J]. 实验流体力学,2014,28(5):18-23. doi: 10.11729/syltlx20130101

    YU Y F,LI M Y,ZHAO W B,et al. Experimental study on flow drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters[J]. Journal of Experiments in Fluid Mechanics,2014,28(5):18-23. doi: 10.11729/syltlx20130101
    [19] HOLZNER M. Polymers reduce drag more than expected[J]. Physics,2018,11:id. 29. doi: 10.1103/physics.11.29
    [20] SOKHAL K S,GANGACHARYULU D,BULASARA V K. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe[J]. Carbohydrate Polymers,2018,181:1017-1025. doi: 10.1016/j.carbpol.2017.11.048
    [21] 李昌烽,禹燕飞,赵文斌,等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报(自然科学版),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006

    LI C F,YU Y F,ZHAO W B,et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University (Natural Science Edition),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  312
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-05-13
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日