留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂群山环境下某桥址的风场特性

沈国辉 张帅光 余世策

沈国辉,张帅光,余世策. 复杂群山环境下某桥址的风场特性[J]. 实验流体力学,2021,35(4):26-33 doi: 10.11729/syltlx20200020
引用本文: 沈国辉,张帅光,余世策. 复杂群山环境下某桥址的风场特性[J]. 实验流体力学,2021,35(4):26-33 doi: 10.11729/syltlx20200020
SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33. doi: 10.11729/syltlx20200020
Citation: SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33. doi: 10.11729/syltlx20200020

复杂群山环境下某桥址的风场特性

doi: 10.11729/syltlx20200020
基金项目: 国家自然科学基金(51838012)
详细信息
    作者简介:

    沈国辉:(1977-),男,浙江台州人,博士,副教授。研究方向:结构风工程和结构计算分析。通信地址:浙江省杭州市浙江大学紫金港校区安中大楼A710(310058)。E-mail:ghshen@zju.edu.cn

    通讯作者:

    E-mail:ghshen@zju.edu.cn

  • 中图分类号: TU312

Wind field characteristics on a bridge site under complex mountain terrain

  • 摘要: 通过地貌模型风洞试验研究复杂群山情况下某桥址的风场特性,分析平均风速、风攻角、湍流强度、湍流积分尺度等随风向角和测点位置的变化特性,获得了复杂群山环境下典型位置测点脉动风速功率谱的变化情况。研究表明:复杂群山环境下,桥址的平均风速均小于梯度风高度的风速;爬坡效应使得顺山谷方向来流(顺风向,即风从谷口吹入)产生显著的正攻角,最大值为+35.3°;顺风向时,桥址各测点的纵向湍流强度和横向湍流强度达到最小,约为10%,其他风向下的湍流强度较大;顺风向时,桥址的湍流积分尺度较大,且随测点高度上升而增大,桥址各测点功率谱较来流功率谱发生明显变化,功率谱高频段能量显著增大、单峰特征降低。
  • 图  1  三维地貌模型

    Figure  1.  Three-dimensional geomorphic model

    图  2  直径7 km范围的地貌模型

    Figure  2.  Terrain model with a diameter of 7 km

    图  3  TFI测试仪器

    Figure  3.  TFI test instrument

    图  4  测点和测试仪器

    Figure  4.  Measuring points and testing equipment

    图  5  风洞试验风向角

    Figure  5.  Wind azimuths for wind tunnel test

    图  6  平均风速和湍流强度剖面

    Figure  6.  Profiles of mean velocity and turbulent intensity

    图  7  归一化脉动风速功率谱

    Figure  7.  Normalized power spectrum density of velocity

    图  8  各测点的平均风速加速比

    Figure  8.  Speed-up ratio of measuring points

    图  9  各测点的风攻角

    Figure  9.  Wind attack angle of measuring point

    图  10  测点3的平均风速加速比与风攻角

    Figure  10.  speed-up ratio and attack angle of point 3

    图  11  各测点三个方向的湍流强度

    Figure  11.  Turbulence intensity in three directions of measuring points

    图  12  各测点的积分尺度

    Figure  12.  Turbulence integral scales of measuring points

    图  13  同一垂直平面内的归一化脉动风速功率谱

    Figure  13.  Wind speed spectrum in vertical direction

    图  14  各测点不同风向角下的归一化脉动风速功率谱

    Figure  14.  Wind speed spectrum in horizontal direction

  • [1] 中华人民共和国交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.

    Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.
    [2] CHOCK G Y K,COCHRAN L. Modeling of topographic wind speed effects in Hawaii[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(8):623-638. doi: 10.1016/j.jweia.2005.06.002
    [3] MERONEY R N. Wind-tunnel simulation of the flow over hills and complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1980,5(3-4):297-321. doi: 10.1016/0167-6105(80)90039-2
    [4] TEUNISSEN H W,SHOKR M E,BOWEN A J,et al. The Askervein Hill Project: Wind-tunnel simulations at three length scales[J]. Boundary-Layer Meteorology,1987,40(1-2):1-29. doi: 10.1007/BF00140067
    [5] LUBITZ W D,WHITE B R. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(8):639-661. doi: 10.1016/j.jweia.2006.09.001
    [6] CARPENTER P,LOCKE N. Investigation of wind speeds over multiple two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):109-120. doi: 10.1016/S0167-6105(99)00065-3
    [7] 沈国辉,翁文涛,王轶文,等. 某复杂山体的三维风场特征研究[J]. 振动与冲击,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009

    SHEN G H,WENG W T,WANG Y W,et al. A study on three-dimensional wind field characteristics of a complex hill[J]. Journal of Vibration and Shock,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009
    [8] 陈政清,李春光,张志田,等. 山区峡谷地带大跨度桥梁风场特性试验[J]. 实验流体力学,2008,22(3):54-59, 67.

    CHEN Z Q,LI C G,ZHANG Z T,et al. Model test study of wind field characteristics of long-span bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics,2008,22(3):54-59, 67.
    [9] 庞加斌,宋锦忠,林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008

    PANG J B,SONG J Z,LIN Z X. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway and Transport,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008
    [10] 刘黎阳,张志田,汪志雄,等. 不同规模地形模型对某山区桥梁设计风特性确定的影响[J]. 实验流体力学,2018,32(6):49-54. doi: 10.11729/syltlx20170140

    LIU L Y,ZHANG Z T,WANG Z X,et al. Scope effects of terrain models on wind properties design of a bridge located at mountainous area[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):49-54. doi: 10.11729/syltlx20170140
    [11] 张宏杰,赵金飞,蔡达章,等. 垭口地貌要素对风速分布规律影响的风洞试验研究[J]. 实验流体力学,2014,28(4):25-30. doi: 10.11729/syltlx20130044

    ZHANG H J,ZHAO J F,CAI D Z,et al. Wind tunnel test on the influence of col features on wind speed distribution[J]. Journal of Experiments in Fluid Mechanics,2014,28(4):25-30. doi: 10.11729/syltlx20130044
    [12] 庞加斌,宋锦忠,林志兴. 四渡河峡谷大桥桥位风的湍流特性实测分析[J]. 中国公路学报,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007

    PANG J B,SONG J Z,LIN Z X. Field measurement analysis of wind turbulence characteristics of Sidu river valley bridge site[J]. China Journal of Highway and Transport,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007
    [13] HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part I—Mean wind and turbulence intensities[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36. doi: 10.1016/j.jweia.2008.11.002
    [14] HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part Ⅱ: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59. doi: 10.1016/j.jweia.2008.11.003
    [15] 于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008

    YU J H,LI M S,LIAO H L. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    [16] HUANG G Q,CHENG X,PENG L L,et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,178:80-90. doi: 10.1016/j.jweia.2018.05.008
    [17] 胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184

    HU P,LI Y L,LIAO H L. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184
    [18] 余世策,陈勇,李庆祥,等. 建筑风环境风洞试验中风速探头的研制与应用[J]. 实验流体力学,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015

    YU S C,CHEN Y,LI Q X,et al. Development and application of wind speed probe for wind tunnel test of wind environment around buildings[J]. Journal of Experiments in Fluid Mechanics,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015
    [19] 中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for wind tunnel test of buildings and structures: JGJ/T 338—2014[S]. Beijing: China Architecture & Building Press, 2015.
    [20] SIMIU E, SCANLAN R H. Wind effects on structure[M]. 3rd ed. New York: Wiley InterScience, 1996.
    [21] FLAY R G J,STEVENSON D C. Integral length scales in strong winds below 20 m[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,28(1-3):21-30. doi: 10.1016/0167-6105(88)90098-0
  • 加载中
图(14)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-05-24
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日