Aerodynamic design and numerical simulation of combined cycle nozzle with small length to height ratio
-
摘要: 在强几何约束条件下,对一种Ma=0~6.0的小长高比组合发动机喷管气动设计开展了初步研究。采用特征线法设计程序开展了喷管型线设计,并对设计点马赫数选取、三维侧向膨胀角、喷管双通道相对位置对喷管气动性能的影响开展了研究,给出了兼顾空间有效利用与喷管气动性能的喷管气动设计方案。数值模拟结果显示:降低设计点马赫数可以改善组合发动机喷管在低马赫数飞行时的性能,避免喷管出现严重过膨胀;喷管保持出口高度不变时,随着侧向膨胀角的増大,其高马赫数气动性能较优,而低马赫数气动性能下降严重。涡轮/冲压发动机喷管出口相对位置对并联布局组合发动机喷管转级点气动性能影响较大,且存在一个最佳位置布局,使得转级点达到最优的推力性能。获得的组合发动机喷管在设计马赫数下的推力系数约为0.920,模态转换过程流场平稳过渡,推力系数不低于0.918。Abstract: A preliminary study on the aerodynamic design of the combined cycle nozzle working in the range Ma=0~6.0 with small length to height ratio was carried out under strong geometric restricts. The line of the nozzle was designed by the method of characteristic. The effects of the design Mach number, the three-dimensional lateral expansion angle and the relative position of the two nozzles on the aerodynamic performance were studied. A nozzle aerodynamic design scheme considering both the effective utilization of space and the aerodynamic performance was presented. The numerical simulation results show that reducing the Mach number at the design points can improve the performance of the combined cycle nozzles during the subsonic flight and avoid serious overexpansion of the nozzles. With the increase of the lateral expansion angle, the aerodynamic performance of the nozzle that keeps the exit height unchanged at high Mach number is superior, while the aerodynamic performance of the nozzle at low Mach number decreases seriously. The relative position of the turbine engine and the ramjet nozzle outlet has a great influence on the aerodynamic performance of the transition point, and there is an optimal position layout, which achieves the optimal thrust performance. The thrust coefficient of the combined cycle nozzle is about 0.920 at the designed Mach number. The flow field is smooth transition during the transition mode, when the thrust coefficient is not less than 0.918.
-
Key words:
- TBCC /
- nozzle with small length to height ratio /
- numerical simulation /
- transition mode
-
表 1 不同网格量的喷管性能参数
Table 1. Nozzle performance parameters with different mesh numbers
Mesh numbers L/N M/(N·m) Cfx 200万 2575.8 -2069.9 0.9132 300万 2583.4 -2088.3 0.9163 400万 2610.1 -2100.1 0.9200 表 2 冲压发动机喷管进口参数
Table 2. The parameters of ramjet nozzle inlet
Ma h/km pt/Pa Tt/K 3.0 18.0 138 319 1432 3.5 20.0 177 797 1496 4.0 21.9 164 240 2195 5.0 24.8 202 909 2665 表 3 喷管构型的侧向膨胀角
Table 3. The lateral expansion angle of the nozzle
Model Angle Width A 0° 1.50 Ht B 2.23° 2.06 Ht C 6.06° 3.03 Ht 表 4 冲压模态时喷管性能参数
Table 4. Nozzle performance parameters at supersonic mode
Ma h/km L/N M/(N·m) Cfx 3.0 18.0 -452.9 -136.1 0.9204 3.5 20.0 120.2 561.0 0.9508 4.0 21.9 223.2 571.4 0.9416 5.0 24.8 746.6 1214.4 0.9259 6.0 26.0 1131.7 1761.2 0.9184 表 5 模态转换时喷管性能参数
Table 5. Nozzle performance parameters at transition mode
Transition mode L/N M/(N·m) Cfx 1 2583.5 -2088.3 0.9163 2 2413.6 -1861.9 0.9190 3 2178.1 -1739.3 0.9229 4 1599.6 -1693.3 0.9344 5 801.8 -337.1 0.9515 -
[1] CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston:American Institute of Aeronautics and Astronautics, 2000. [2] KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview[R]. AIAA-2005-3256, 2005. [3] SNYDER L E, ESCHER D W, DeFRANCESCO R L, et al. Turbine Based Combination Cycle (TBCC) propulsion subsystem integration[R]. AIAA 2004-3649, 2004. [4] KELLY M J, MENICH R P, OLDS J R. What's cheaper to fly: rocket or TBCC? Why?[R]. AIAA 2010-2326, 2010. [5] BARTOLOTTA P A, McNELIS N B, SHAFER D G. High speed turbines: development of a turbine accelerator (RTA) for space access[R]. AIAA 2003-6943, 2003. [6] EDWARDS C, SMALL W, WEIDNER J, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]//Proc of the 13th Aerospace Sciences Meeting. 1975. [7] LEDERER R, KRUGER W. Nozzle development as a key element for hypersonics[C]//Proc of the 5th International Aerospace Planes and Hypersonics Technologies Conference. 1993. [8] McDANIEL J C, CHELLIAH H, GOYNE C P, et al. US National Center for hypersonic combined cycle propulsion: An overview[R]. AIAA 2009-7280, 2009. [9] DUSA D J.Exhaust nozzle system design considerations for turbo-ramjet propulsion systems[R]. ISABE 89-7077, 1989. [10] GAMBLE E J, HAID D.Hydraulic and kinematic system model for TBCC dynamic Simulation[R]. AIAA 2010-6641, 2010. [11] 朱大明, 陈敏, 唐海龙, 等.高超声速涡轮/冲压组合发动机方案[J].北京航空航天大学学报, 2006, 32(3):263-266. doi: 10.3969/j.issn.1001-5965.2006.03.004ZHU D M, CHEN M, TANG H L, et al. "Over-under" concept hypersonic turbo-ramjet combined propulsion system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3):263-266. doi: 10.3969/j.issn.1001-5965.2006.03.004 [12] 张丁午, 王强, 胡海洋.并联式TBCC发动机进排气系统气动特性研究[J].燃气涡轮试验与研究, 2013, 26(6):35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201306009.htmZHANG D W, WANG Q, HU H Y. Aerodynamic characte-ristics of the over-under TBCC inlet and exhaust system[J]. Gas Turbine Experiment and Research, 2013, 26(6):35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201306009.htm [13] CHEN M, ZHU Z L, ZHU D M, et al.Analysis tool for Turbine Based Combined Cycle engine concept[J].Journal of Astronautics, 2006, 27(5):854-859. http://www.researchgate.net/publication/293320709_Performance_analysis_tool_for_turbine_based_combined_cycle_engine_concept [14] 李龙. TBCC推进系统总体性能建模与工作特性分析[D].南京: 南京航空航天大学, 2008.LI L. Performance mathematic model and operation characteristic analysis for Turbine Based Combined Cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. [15] 李超.并联式TBCC排气系统的气动设计、性能研究及初步优化[D].南京: 南京航空航天大学, 2009.LI C. Aerodynamic scheme designing, performance analysis and preliminary optimization of over/under TBCC exhaust system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [16] 莫建伟, 徐惊雷, 乔松松.并联式TBCC发动机排气系统性能数值模拟[J].推进技术, 2013, 34(4):463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304007.htmMO J W, XU J L, QIAO S S. Numerical study of the over-under TBCC exhaust system[J]. Journal of Propulsion Technology, 2013, 34(4):463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304007.htm [17] 王占学, 刘增文, 王鸣, 等.涡轮基组合循环发动机技术发展趋势和应用前景[J].航空发动机, 2013, 39(3):12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of Turbine Based Combined Cycle engine[J]. Aeroengine, 2013, 39(3):12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003 [18] 王永胜, 王占学, 刘增文, 等.并联式涡轮冲压组合发动机安装性能数值模拟[J].推进技术, 2011, 32(3):312-317, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201103005.htmWANG Y S, WANG Z X, LIU Z W, et al. Numerical simulation of installed performance for parallel turbo-ramjet combined cycle engine[J]. Journal of Propulsion Technology, 2011, 32(3):312-317, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201103005.htm [19] 刘增文.涡轮冲压组合发动机一体化数值模拟[D].西安: 西北工业大学, 2007.LIU Z W. Integrated performance numerical simulation of turbo-ramjet[D]. Xi'an: Northwestern Polytechnical University, 2007. [20] 张连河, 范洁川.三元收缩段优化设计研究[J].空气动力学学报, 2003, 21(4):417-423. doi: 10.3969/j.issn.0258-1825.2003.04.005ZHANG L H, FAN J C. Research of optimized design of three-dimensional contraction[J]. ActaAerodynamica Sinica, 2003, 21(4):417-423. doi: 10.3969/j.issn.0258-1825.2003.04.005 [21] 李念, 张堃元, 徐惊雷.二维非对称喷管数值模拟与验证[J].航空动力学报, 2004, 19(6):802-805. doi: 10.3969/j.issn.1000-8055.2004.06.012LI N, ZHANG K Y, XU J L. Simulation and experiment validation of a two dimensional asymmetric ramp nozzle[J]. Journal of Aerospace Power, 2004, 19(6):802-805. doi: 10.3969/j.issn.1000-8055.2004.06.012 [22] SPAID F W, KEENER E R. Hypersonic nozzle/afterbody CFD code validation. Ⅰ-experimental measurements[C]//Proc of the 31st Aerospace Sciences Meeting. 1993. [23] 朱克罗, 霍夫曼.气体动力学[M].王汝涌, 吴宗真, 吴宗善, 译.北京: 国防工业出版社, 1984. -