Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision
-
摘要: 为实现直升机旋翼桨叶位移变形的非接触测量,提出了基于双目立体视觉的三维测量方法。采用编码标记方式,在旋翼桨叶表面粘贴具有唯一编码信息的标记点,以高频激光器提供纳秒级瞬态照明,同步触发高速CCD相机采集桨叶瞬态图像,基于双目立体视觉原理计算标记点的三维坐标,进而计算得到旋翼桨叶的位移变形参数。试验结果表明:该测量方法的测量精度小于0.1 mm,测量准度小于0.3 mm,可满足直升机旋翼桨叶位移变形的高精度测量需求。Abstract: To realize the displacement and deformation measurements of helicopter rotor blades in a non-contact way, the binocular stereo vision based three-dimensional measurement method is presented. First, coded targets with unique identifying information are pasted on the rotor blades. Then, with nanosecond illumination provided by the high-frequency laser, high-speed CCD cameras are triggered synchronously to acquire the transient images of rotor blades. Finally, based on the binocular stereo principle, three-dimensional coordinates of coded targets are obtained, which are used to calculate the displacement and deformation parameters of rotor blades further. The test results show that the accuracy of our proposed method is better than 0.3 mm, which is capable of meeting the high precision displacement and deformation measurement requirements of helicopter rotor blades.
-
表 1 左相机内部参数标定结果
Table 1. Internal calibration results of the left camera
标定参数 标定结果 等效焦距(fu, fv ) (2622.916, 2622.923) 光学中心(cu, cv ) (540.045, 528.145) 不垂直因子s 0 径向畸变系数(k1, k2) (-0.159, 0.435) 重投影误差e 0.232 表 2 右相机内部参数标定结果
Table 2. Internal calibration results of the right camera
标定参数 标定结果 等效焦距(fu, fv ) (2621.891, 2622.130) 光学中心(cu, cv ) (539.095, 498.173) 不垂直因子s 0 径向畸变系数(k1, k2) (-0.172, 0.932) 重投影误差e 0.226 表 3 双目成像系统外部参数标定结果
Table 3. External calibration results of the binocular imaging system
标定参数 标定结果 旋转矩阵R 平移向量T (914.501 34.923 250.291) 表 4 测量精准度
Table 4. Measuring accuracy
转速
/(r·min-1)控制总距
/(°)测量精度
σ1/mm测量准度
σ2/mm1300 0 0.079 0.152 6 0.072 0.170 10 0.084 0.178 1860 0 0.072 0.149 6 0.084 0.199 10 0.093 0.232 表 5 桨尖平均挥舞位移量
Table 5. Average displacements of the blade tip
转速/(r·min-1) 控制总距/(°) 平均挥舞位移量/mm 1300 0 -11.99 6 -6.76 10 1.00 1860 0 -17.03 6 -10.44 10 -1.28 表 6 桨根、桨尖平均总距
Table 6. Average pitch angle of the blade root and tip
转速
/(r·min-1)控制总距
/(°)桨根平均
总距/(°)桨尖平均
总距/(°)1300 0 -1.72 -5.70 6 4.22 0.68 10 8.15 5.05 1860 0 -1.41 -5.39 6 4.51 1.24 10 8.52 5.56 表 7 桨根、桨尖总距变化量
Table 7. Changes on pitch angle of the blade root and tip
转速
/(r·min-1)控制总距
/(°)桨根平均
总距变化量/(°)桨尖平均
总距变化量/(°)1300 6 5.94 6.38 10 9.87 10.75 1860 6 5.92 6.63 10 9.93 10.95 -
[1] 曹义华.现代直升机旋翼空气动力学[M].北京: 北京航空航天大学出版社, 2015.CAO Y H. Modern helicopter rotor aerodynamics[M]. Beijing: Beihang University Press, 2015. [2] 黄明其.直升机风洞试验[M].北京: 国防工业出版社, 2014.HUANG M Q. Helicopter wind tunnel test[M]. Beijing: National Defense Industry Press, 2014. [3] 陈文, 夏品奇.采用光纤传感测量的直升机旋翼桨叶分布载荷识别[J].振动工程学报, 2009, 22(2): 183-187. doi: 10.3969/j.issn.1004-4523.2009.02.012CHEN W, XIA P Q. Identification of helicopter rotor blade distributed loads by using fiber optic sensor measurement[J]. Journal of Vibration Engineering, 2009, 22(2): 183-187. doi: 10.3969/j.issn.1004-4523.2009.02.012 [4] SCHNEIDER O, VAN DER WALL B G, PENGEL K. HART II blade motion measured by Stereo Pattern Recognition(SPR)[C]//Proc of the American Helicopter Society 59th Annual Forum. 2003. [5] SCHNEIDER O, VAN DER WALL B G. Final analysis of HART II blade deflection measurements[C]//Proc of the 29th European Rotorcraft Forum. 2003. [6] SCHNEIDER O. Analysis of SPR measurements from HART II[J]. Aerospace Science and Technology, 2005, 9(5): 409-420. doi: 10.1016/j.ast.2005.01.013 [7] STRAUB F K, ANAND V R, LAU B H, et al. Wind tunnel test of the SMART active flap rotor[J]. Journal of the American Helicopter Society, 2018, 63(1): 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdcd38ff9b895c294442c8c40dffd1b [8] OLSON L E, ABREGO A, BARROWS D, et al. Blade deflection measurements of a full-scale UH-60A rotor system[C]//Proc of the American Helicopter Society Aeromechanics Specialist Conference. 2010. [9] BARROWS D, BURNER A W, ABREGO A, et al. Blade displacement measurements of the full-scale UH-60A airloads rotor[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011. [10] ABREGO A, OLSON L E, ROMANDER E A, et al. Blade displacement measurement technique applied to a full-scale rotor test[C]//Proc of the American Helicopter Society 68th Annual Forum. 2012. [11] ROMANDER E A, MEYN L, BARROWS D, et al. Blade motion correlation for the full-scale UH-60A airloads rotor[C]//Proc of the AHS 5th Decennial Aeromechanics Specialists' Conference. 2014. [12] BLEDRON R T, LEE-RAUSCH E M. Blade displacement predictions for the full-scale UH-60A airloads rotor[C]//Proc of the 70th American Helicopter Society (AHS) Annual Forum. 2014. [13] ABREGO A, MEYN L, BURNER A W, et al. Summary of full-scale blade displacement measurements of the UH-60A airloads rotor[C]//Proc of the AHS Technical Meeting on Aeromechanics Design for Vertical Lift. 2016. [14] LAWSON M S, SIROHI J. Measurement of deformation of rotating blades using digital image correlation[C]//Proc of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2011. [15] SIROHI J, LAWSON M S. Measurement of helicopter rotor blade deformation using digital image correlation[J]. Optical Engineering, 2012, 51(4): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c91044f081f16ab316dcd3f6f284ad9f [16] SICARD J, SIROHI J. Modeling of the large torsional deformation of an extremely flexible rotor in hover[J]. AIAA Journal, 2014, 52(8): 1604-1615. doi: 10.2514/1.J052617 [17] SOUSA P J, BARROS F, TAVARES P J, et al. Displacement measurement and shape acquisition of an RC helicopter blade using digital image correlation[C]//Proc of the International Conference on Structural Integrity. 2017. [18] UEHARA D, CAMERON C G, SIROHI J. Deformation measurement and modal identification of an extremely flexible rotor blade[C]//Proc of the 6th Asian-Australian Rotorcraft Forum. 2017. [19] 陈洞滨, 熊邦书, 黄建萍, 等.基于标记点的直升机旋翼动态三维测量方法[J].半导体光电, 2013, 34(5): 904-908. http://d.old.wanfangdata.com.cn/Thesis/D491449CHEN D B, XIONG B S, HUANG J P, et al. Dynamic 3D-measurement method of helicopter rotor based on marked points[J]. Semiconductor Optoelectronics, 2013, 34(5): 904-908. http://d.old.wanfangdata.com.cn/Thesis/D491449 [20] 熊邦书, 熊京京, 黄建萍, 等.基于双目视觉的直升机旋翼桨叶共锥度检测法[J].半导体光电, 2014, 35(5): 924-927. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201405041XIONG B S, XIONG J J, HUANG J P, et al. Pyramid angle detection method of helicopter rotor blade based on binocular vision[J]. Semiconductor Optoelectronics, 2014, 35(5): 924-927. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201405041 [21] 欧巧凤, 赵平均, 熊邦书, 等.基于立体视觉的旋翼共锥度动态测量系统精度分析[J].仪器仪表学报, 2015, 36(8): 1692-1698. doi: 10.3969/j.issn.0254-3087.2015.08.002OU Q F, ZHAO P J, XIONG B S, et al. Accuracy analysis of the measuring instrument for taper angle of running rotor blades based on stereo vision[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1692-1698. doi: 10.3969/j.issn.0254-3087.2015.08.002 [22] 熊邦书, 熊奎, 李新民, 等.基于双目视觉的直升机旋翼桨叶挥舞角测量[J].测控技术, 2016, 35(1): 34-37. doi: 10.3969/j.issn.1000-8829.2016.01.009XIONG B S, XIONG K, LI X M, et al. Flapping angle measurement of helicopter rotor blade based on binocular vision[J]. Measurement & Control Technology, 2016, 35(1): 34-37. doi: 10.3969/j.issn.1000-8829.2016.01.009 [23] 熊邦书, 汪建勇, 黄建萍, 等.基于CUDA的直升机旋翼桨叶挥舞角快速测量方法[J].测控技术, 2016, 35(6): 30-32. doi: 10.3969/j.issn.1000-8829.2016.06.008XIONG B S, WANG J Y, HUANG J P, et al. Fast measure-ment method of helicopter rotor blade flapping angle based on CUDA[J]. Measurement & Control Technology, 2016, 35(6): 30-32. doi: 10.3969/j.issn.1000-8829.2016.06.008 [24] 吴国宝, 吴志刚, 易晖, 等.基于三维数字影像的直升机旋翼运动参数测量方法研究[J].光电技术应用, 2016, 31(2): 76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019WU G B, WU Z G, YI H, et al. Research on motion parameter measurement of helicopter rotor blade based on three-dimensional digital image[J]. Electro-Optic Technology Application, 2016, 31(2): 76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019 [25] 韩涛, 吴衡.基于立体视觉的直升机旋翼桨叶三维动态变形测量[J].科学技术与工程, 2018, 18(8): 322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054HAN T, WU H. 3D dynamic deformation measurement of helicopter rotor blades based on stereo vision[J]. Science Technology and Engineering, 2018, 18(8): 322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054 [26] ABDEL-AZIZ Y I, KARARA H M, et al. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(2): 103-107. doi: 10.14358/PERS.81.2.103 [27] TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[C]//Proc of the Computer Vision and Pattern Recognition. 1986. [28] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718 -