留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光吸收光谱断层诊断技术测量燃烧流场研究进展

洪延姬 宋俊玲 饶伟 王广宇

洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177
引用本文: 洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177
Hong Yanji, Song Junling, Rao Wei, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177
Citation: Hong Yanji, Song Junling, Rao Wei, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177

激光吸收光谱断层诊断技术测量燃烧流场研究进展

doi: 10.11729/syltlx20160177
基金项目: 

国家自然科学基金 61505263

国家自然科学基金 61505262

详细信息
    作者简介:

    洪延姬(1963-), 女, 吉林龙井人, 博士, 研究员, 激光推进及其应用国家重点实验室主任。研究方向:非接触光学测量技术。通信地址:北京怀柔3380信箱86号。E-mail:hongyanji@vip.sina.com

    通讯作者:

    宋俊玲, E-mail:songjl_2008@163.com

  • 中图分类号: O433.5

Progress on tunable diode laser absorption tomography technique for combustion diagnostics

  • 摘要: 激光吸收光谱断层诊断技术(TDLAT)是将可调谐半导体激光吸收光谱技术(TDLAS)与计算机断层诊断技术(CT)相结合的一种新型的流场二维测量技术。该测量技术具有灵敏度高、抗噪声能力强等优势,可用于高温、高速、有毒等严苛环境下的流场监测,尤其在燃烧和推进流场测量中具有广阔的应用前景。首先介绍了TDLAT测量的基本理论,其次将TDLAT系统分为4个基本模块,即光学测量模块、数据处理模块、重建算法模块和后处理模块,分别对各模块的研究现状和关键技术进行了综述和对比分析,再次,列举了TDLAT在超燃冲压发动机、航空发动机和燃煤锅炉上的应用,最后讨论了TDLAT在燃烧流场测量中的发展趋势和有待解决的问题。介绍的TDLAT技术研究现状、关键技术及发展动态可为相关研究人员提供参考。
  • 图  1  红外波段的二极管激光器可用于探测的气体组分

    Figure  1.  Combustion species detection via diode laser

    图  2  边界层厚度对测量结果的影响[5]

    Figure  2.  Influence of the boundary-layer thickness on the velocity measurement[5]

    图  3  吸收谱线1487nm对非均匀分布流场速度测量结果[9]

    Figure  3.  Measured velocity from path-integrated lineshapes of 1487nm line[9]

    图  4  TDLAT测量原理示意图

    Figure  4.  Schematic of TDLAT-based measurement

    图  5  Gillet等人的实验装置示意图[12]

    Figure  5.  Overview of the experimental setup by Gillet[12]

    图  6  浙江大学王飞小组装置示意图[13]

    Figure  6.  Overview of the experimental setupby Wang Fei from Zhejing University[13]

    图  7  宋俊玲等人的实验装置示意图[15]

    Figure  7.  Overview of the experimental setup by Song Junling[15]

    图  8  NASA超声速直连台及TDLAT系统[16]

    Figure  8.  NASA Langley direct-connect supersonic combustion test facility and TDLAT system[16]

    图  9  基于超光谱技术的实验测量装置[17]

    Figure  9.  Experimental setup based on Hyperspectral Tomography[17]

    图  10  光路设计照片及27条光线分布[19]

    Figure  10.  Photograph of the optical deign and distribution of 27 beams[19]

    图  11  刘畅等人二维重建光路设计及测量装置示意图[24]

    Figure  11.  Schematic of optical deign and layout of experimental setup by Liu Chang[24]

    图  12  重建结果[25]

    Figure  12.  Reconstruction results[25]

    图  13  数据采集和处理电子包[27]

    Figure  13.  Data acquisition and processing circuit[27]

    图  14  最大似然期望最大法的原始流场和重建结果[46]

    Figure  14.  Original and reconstruction flow field based on ML-EM algorithm[46]

    图  15  Kasyutich等人重建结果图

    Figure  15.  Reconstruction results by Kasyutich

    图  16  不同算法对温度和组分浓度的重建误差[51]

    Figure  16.  Comparison of relative errors in temperature and concentration reconstruction from different algorithms[51]

    图  17  HIFiRE-2中TDLAT系统[56]

    Figure  17.  TDLAT system inHIFiRE-2[56]

    图  18  HIFiRE-2地面测试系统燃烧室出口TDLAS测量系统和实验结果[57]

    Figure  18.  TDLAT system for HIFiRE-2 ground test and experimental results[57]

    图  19  J85航空发动机出口二维分布测量系统示意图和实物照片[58]

    Figure  19.  Schematic of location of the measurements plane in J85 aeroengine and photograph of optical components[58]

    图  20  ZoloBOSS锅炉测量系统示意图[61]

    Figure  20.  Schematic of coal combustion measurement system by ZoloBOSS[61]

    表  1  3类重建算法比较

    Table  1.   Comparison of three kinds of reconstruction algorithms

    变换法 迭代法 超光谱法
    投影角度要求 180°内的完备投影 不完备投影角度 最少可采用2个投影角度
    重建时间 约几十分钟 毫秒至秒量级 数小时
    重建稳定性 受投影角度影响较大 受测量噪声影响较大 稳定性较好
    下载: 导出CSV
  • [1] Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimca Acta B, 2015, 106:45-66. doi: 10.1016/j.sab.2015.01.010
    [2] Wright P, Johnson M, Fisher E, et al. Progress towards non-intrusive optical measurement of gas turbine exhaust species distributions[C]. Aerospace Conference, IEEE, 2015, 7119019.
    [3] 洪延姬.燃烧场吸收光谱诊断技术研究进展[J].实验流体力学, 2014, 28(3):12-15. doi: 10.11729/syltlx2014ty02

    Hong Y. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):12-25. doi: 10.11729/syltlx2014ty02
    [4] Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1):1-40. doi: 10.1016/j.proci.2010.09.007
    [5] Zhou X, Liu X, Jeffries J B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement Science and Technology, 2003, 14:1459-1468. doi: 10.1088/0957-0233/14/8/335
    [6] Zhou X, Liu X, Jefferies J B, et al. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines[J]. Measurement Science and Technology, 2005, 16:2437-2445. doi: 10.1088/0957-0233/16/12/006
    [7] Liu X, Jefferies J B, Hanson R K, et al. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature[J]. Applied Physics B, 2006, 82:469-478. doi: 10.1007/s00340-005-2078-9
    [8] Chang L S, Strand C L, Jeffries J B, et al. Supersonic mass-flux measurements via tunable diode laser absorption and nonuniform flow modeling[J]. AIAA Journal, 2011, 49(12):2783-2791. doi: 10.2514/1.J051118
    [9] Chang L S. Development of a diode laser sensor for measurement of mass flux in supersonic flow[D]. Stanford University, 2011.
    [10] Cai W, Kaminski C F. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy[J]. Applied Physics Letters, 2014, 104:154106. doi: 10.1063/1.4871976
    [11] Guha A, Schoeg I M. Tomographic imaging of flames:assessment of reconstruction error based on simulated results[J]. Journal of Propulsion and Power, 2014, 30(2):350-359. doi: 10.2514/1.B34831
    [12] Gillet B, Hardalupas Y, Kavounides C, et al. Infrared Absorption for Measurement of Hydrocarbon Concentration in Fuel/Air Mixtures[J]. Applied Thermal Engineering, 2004, (24):1633-1653. https://www.sciencedirect.com/science/article/pii/S1359431103003880
    [13] Wang F, Cen K F, Li N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode[J]. Measurement Science and Technology, 2010, 21(4):1-10.
    [14] Wang F, Wu Q, Huang Q, et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane air flame using TDLAS-based tomography technology[J]. Optics Communications, 2015, 346:53-63. doi: 10.1016/j.optcom.2015.02.015
    [15] Song J, Hong Y, Wang G et al. Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy[J]. Applied Physics B, 2013, 112:529-537. doi: 10.1007/s00340-013-5435-0
    [16] Busa K M, Ellison E N, McGovern B J, et al. Measurements on NASA langley durable combustor rig by TDLAT preliminary results[R]. AIAA-2013-0696, 2013.
    [17] Ma L, Cai W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10):8602-8613. doi: 10.1364/OE.17.008602
    [18] Carey S J, McCann H, Hindle F P, et al. Chemical Species Tomography by Near Infra-red Absorption[J]. Chemical Engineering Journal, 2000, (77):111-118. https://www.sciencedirect.com/science/article/pii/S1385894799001394
    [19] Wright P, Terzija N, Davidson J L, et al. High-speed chemical species tomography in a multi-cylinder automotive engine[J]. Chemical Engineering Journal, 2010, (158):2-10. http://cn.bing.com/academic/profile?id=26b9e91c19c83dc5c47cec9d112a7169&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Terzija N, Davidson J L, Garcia-Stewart C A, et al. Image optimization for chemical species tomography with an irregular and sparse beam array[J]. Measurement Science and Technology, 2008, 19(9):094007. doi: 10.1088/0957-0233/19/9/094007
    [21] Deguchi Y, Yasui D, Adachi A. Development of 2D Temperature and Concentration Measurement Method Using Tunable Diode Laser Absorption Spectroscopy[J]. Journal of Mechanics Engineering and Automation, 2012, (2):543-549. http://cn.bing.com/academic/profile?id=f935db3b221e11e923c1bc482d24c790&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Deguchi Y, Kamimoto T, Kiyota Y. Time resolved 2D concentration and temperature measurement using CT tunable laser absorption spectroscopy[J]. Flow Measurement and Instrumentation, 2015, 46:312-318. doi: 10.1016/j.flowmeasinst.2015.06.025
    [23] Choi D W, Jeon M G, Cho G R, et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption Tunable Diode Laser Absorption Spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1):84-89. doi: 10.1007/s11630-016-0837-z
    [24] Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics express, 2015, 23(17):22494-22511. doi: 10.1364/OE.23.022494
    [25] Cai W, Ma L. Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnosostics of unsteady reactive flows[J]. Applied Optics, 2010, 49(4):601-610. doi: 10.1364/AO.49.000601
    [26] Busa K M, Brown M S. Fast Data processing for optical absorption measurements[R]. AIAA-2016-0660, 2016.
    [27] Xu L, Liu C, Jing W, et al. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction[J]. Review of Scientific Instruments, 2016, 87:013101. doi: 10.1063/1.4939052
    [28] 姚路, 刘文清, 阚瑞峰, 等.小型化TDLAS发动机测温系统的研究及进展[J].实验流体力学, 2015, 19(2):71-76. http://html.rhhz.net/SYLTLX/html/2015-1-71.htm

    Yao L, Liu W, Kan R. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 19(2):71-76. http://html.rhhz.net/SYLTLX/html/2015-1-71.htm
    [29] Terzija N, McCann H. Wavelet-based image reconstruction for hard-field tomography with severely limited data[J]. IEEE Sensors Journal, 2011, 11(9):1885-1893. doi: 10.1109/JSEN.2010.2100378
    [30] Li J, Yu B, Fischer H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy, 2015, 69(4):496-506. doi: 10.1366/14-07629
    [31] Smith L M, Keefer D R, Sudharsanan S I. Abel inversion using transform techniques[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39(5):367-373. doi: 10.1016/0022-4073(88)90101-X
    [32] Kak A C, Slaney M. Principles of computerized tomographic imaging[M]. New York:IEEE Press, 1999.
    [33] Goulard R, Emmerman P J. Absorption diagnostics[R]. AIAA-79-0085, 1979.
    [34] Dash C J. One-dimensional tomography:a comparison of Abel, onion-peeling, and filtered backprojection methods[J]. Applied Optics, 1992, 31(8):1146-1152. doi: 10.1364/AO.31.001146
    [35] Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 2005, 44(31):6786-6795. doi: 10.1364/AO.44.006786
    [36] Shepp L A, Logan B F. The Fourier reconstruction of a head section[J]. IEEE Transaction on Nuclear Science, 1974, NS-21:21-43. http://citeseerx.ist.psu.edu/showciting?cid=982068
    [37] Bryner E, Sharma M G, McDaniel J C, et al. Tunable diode laser absorption technique development for determination of spatially resolved water concentration and temperature[R]. AIAA-2010-0299, 2010.
    [38] Bryner E, Busa K, MacDaniel J C, et al. Spatially resolved temperature and water vapor concentration distributions in a flat flame burner by tunable diode laser absorption tomography[R]. AIAA-2011-1291, 2011.
    [39] Busa K M, Bryner E, MacDaniel J C, et al. Demonstration of capability of water flux measurement in a scramjet combustor using tunable diode laser absorption tomography and stereoscopic PIV[R]. AIAA-2011-1294, 2011.
    [40] Busa K M, Ellison E N, MacGovern B J, et al. Measurements on NASA Langley durable combustor rig by TDLAT: Preliminary Results[R]. AIAA-2013-0696, 2013.
    [41] 宋俊玲, 洪延姬, 王广宇. H2O温度二维分布的滤波反投影重建[J].强激光与粒子束, 2012, 24(9):2073-2078. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201209011&dbname=CJFD&dbcode=CJFQ

    Song J L, Hong Y J, Wang G Y. Two-dimensional water temperature reconstruction by filtered back-projection method based on tunable diode laser absorption technique[J]. High Power Laser and Particle Beams, 2012, 24(9):2073-2078. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201209011&dbname=CJFD&dbcode=CJFQ
    [42] Xia H, Xu Z, Kan R, et al. Numerical study of two-dimensional water vapor concentration and temperature distribution of combustion zones using tunable diode laser absorption tomography[J]. Infrared Physics & Technology, 2015, 72:170-178. http://cn.bing.com/academic/profile?id=9e213f3ff4a6c9bca095bbd796444442&encoded=0&v=paper_preview&mkt=zh-cn
    [43] Llacer J, Meng J D. Matrix-based image reconstruction method for tomography[J]. IEEE Transactions on Nuclear Science, 1995, 32(1):855-864. http://citeseerx.ist.psu.edu/showciting?cid=2437792
    [44] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensinal electron microscopy and X-ray photography[J]. Journal of Theorectical Biology, 1970, 29(3):471-481. doi: 10.1016/0022-5193(70)90109-8
    [45] Herman G T. Fundamentals of computerized tomography:image reconstruction from projections[M]. New York:Springer, 2009.
    [46] Bryner E, Diskin G S, Goyne C P, et al. Development of an infrared laser absorption tomography system for a scramjet combustor[R]. AIAA-2006-3445, 2006.
    [47] Kasyutich V L, Martin P A. Towards a two-dimensional concentration and temperature laser absorption tomography sensor system[J]. Applied Physics B, 2011(102):149-162. doi: 10.1007/s00340-010-4123-6.pdf
    [48] Wood M P, Ozanyan K B. Temperature mapping from molecular absorption tomography[C]//Sensors, IEEE, 2011: 865-869.
    [49] Daun K J. Infrared species limited data tomography through tikhonov reconstruction[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111:105-115. http://cn.bing.com/academic/profile?id=2211653151d4fec064549febcefc8f47&encoded=0&v=paper_preview&mkt=zh-cn
    [50] 李宁, 翁春生.基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究[J].物理学报, 2010, 59(10):6914-6920. doi: 10.7498/aps.59.6914

    Li N, Weng C. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2010, 59(10):6914-6920. doi: 10.7498/aps.59.6914
    [51] Li N, Weng C. Modified adaptive algebraic tomographic reconstruction for gas distribution from incomplete projection by a two-wavelength absorption scheme[J]. Chinese Optics Letters, 2011, 9(6):061201. doi: 10.3788/COL
    [52] 李金义, 朱可柯, 杜振辉, 等.一种基于TDLAS的高分辨率二维温度场重建算法及数值仿真[J].实验流体力学, 2014, 28(3):63-71. doi: 10.11729/syltlx20130059

    Li J, Zhu K, Du Z. A high-resolution algorithm for 2D temperature reconstruction using TDLAS and numerical simulation[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):63-71. doi: 10.11729/syltlx20130059
    [53] Xia H, Kan R, Xu Z, et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 2017, 90:10-18. doi: 10.1016/j.optlaseng.2016.09.005
    [54] Ma L, Cai W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21):3751-3759. doi: 10.1364/AO.47.003751
    [55] Li F, Yu X, Gu H, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors[J]. Appiled Optics, 2011, 50(36):6697-6707. doi: 10.1364/AO.50.006697
    [56] Jackson K R, Gruber M R, Buccellato S. HIFiRE flight 2 overview and status update 2011[R]. AIAA-2011-2202, 2011.
    [57] Brown M S. Application of diode-laser-based measurements in hypersonic flows[R]. AIAA-2012-0555, 2012.
    [58] Ma L, Li X, Sanders S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1):1152-1162. doi: 10.1364/OE.21.001152
    [59] 吕晓静, 李宁, 翁春生.基于多谱线吸收光谱技术的脉冲爆轰发动机管外流场测试研究[J].光谱学与光谱分析, 2016, 3:004. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract8235.shtml

    Lyu X, Li N, Weng C. The diagnostics of detonation flow external field based on multispectral absorption spectroscopy technology[J]. Spectroscopy and Spectral Analysis. 2016, 3:004. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract8235.shtml
    [60] ZoloBOSS Boiler Optimization Spectroscopy Sensor Operator Manual. www. zolotech. com, 2014-07-25.
    [61] Ruducing green house gas emissions via efficient coal combustion. www. zolotech. com, 2014-07-25.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-07-16
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日